基于扩展分类器系统的球形机器人运动规划

M. Esfandyari, M. Roozegar, M. Shariat Panahi, M. Mahjoob
{"title":"基于扩展分类器系统的球形机器人运动规划","authors":"M. Esfandyari, M. Roozegar, M. Shariat Panahi, M. Mahjoob","doi":"10.1109/IRANIANCEE.2013.6599643","DOIUrl":null,"url":null,"abstract":"In comparison to wheeled robots, spherical mobile robots offer greater mobility, stability, and cope for operation in hazardous environments. In this paper, we propose a direct approach to motion planning based on the notion of “Learning Agents” wherein the motions of the robot at consecutive time-steps are determined by a set of condition-action rules that embody the agent. While traditional motion planning schemes rely on pre-planned optimal trajectories and/or feedback control techniques, the learning agent approach enjoys a model-free methodology that enables the robot to function in semi- or even non-observable environments. The approach presented in this paper employs the eXtended Classifier System (XCS) as its learning agent. Results from numerous simulated experiments show that the proposed approach is capable of adopting a near-optimal path towards a predefined goal point from any given position/orientation.","PeriodicalId":383315,"journal":{"name":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Motion planning of a spherical robot using eXtended Classifier Systems\",\"authors\":\"M. Esfandyari, M. Roozegar, M. Shariat Panahi, M. Mahjoob\",\"doi\":\"10.1109/IRANIANCEE.2013.6599643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In comparison to wheeled robots, spherical mobile robots offer greater mobility, stability, and cope for operation in hazardous environments. In this paper, we propose a direct approach to motion planning based on the notion of “Learning Agents” wherein the motions of the robot at consecutive time-steps are determined by a set of condition-action rules that embody the agent. While traditional motion planning schemes rely on pre-planned optimal trajectories and/or feedback control techniques, the learning agent approach enjoys a model-free methodology that enables the robot to function in semi- or even non-observable environments. The approach presented in this paper employs the eXtended Classifier System (XCS) as its learning agent. Results from numerous simulated experiments show that the proposed approach is capable of adopting a near-optimal path towards a predefined goal point from any given position/orientation.\",\"PeriodicalId\":383315,\"journal\":{\"name\":\"2013 21st Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2013.6599643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2013.6599643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

与轮式机器人相比,球形移动机器人提供了更大的机动性、稳定性和应对危险环境中的操作。在本文中,我们提出了一种基于“学习代理”概念的直接运动规划方法,其中机器人在连续时间步上的运动由包含代理的一组条件-动作规则决定。传统的运动规划方案依赖于预先规划的最优轨迹和/或反馈控制技术,而学习代理方法采用无模型方法,使机器人能够在半可观察甚至不可观察的环境中工作。本文提出的方法采用扩展分类器系统(XCS)作为学习代理。大量的仿真实验结果表明,该方法能够从任何给定位置/方向采用接近最优路径到达预定目标点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion planning of a spherical robot using eXtended Classifier Systems
In comparison to wheeled robots, spherical mobile robots offer greater mobility, stability, and cope for operation in hazardous environments. In this paper, we propose a direct approach to motion planning based on the notion of “Learning Agents” wherein the motions of the robot at consecutive time-steps are determined by a set of condition-action rules that embody the agent. While traditional motion planning schemes rely on pre-planned optimal trajectories and/or feedback control techniques, the learning agent approach enjoys a model-free methodology that enables the robot to function in semi- or even non-observable environments. The approach presented in this paper employs the eXtended Classifier System (XCS) as its learning agent. Results from numerous simulated experiments show that the proposed approach is capable of adopting a near-optimal path towards a predefined goal point from any given position/orientation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信