Dario Zurlo, T. Heitmann, M. Morlock, Alessandro De Luca
{"title":"基于虚拟关节力矩传感的协作机器人碰撞检测与接触点估计","authors":"Dario Zurlo, T. Heitmann, M. Morlock, Alessandro De Luca","doi":"10.1109/ICRA48891.2023.10160661","DOIUrl":null,"url":null,"abstract":"In physical human-robot interaction (pHRI) it is essential to reliably estimate and localize contact forces between the robot and the environment. In this paper, a complete contact detection, isolation, and reaction scheme is presented and tested on a new 6-dof industrial collaborative robot. We combine two popular methods, based on monitoring energy and generalized momentum, to detect and isolate collisions on the whole robot body in a more robust way. The experimental results show the effectiveness of our implementation on the LARA 5 cobot, that only relies on motor current and joint encoder measurements. For validation purposes, contact forces are also measured using an external GTE CoboSafe sensor. After a successful collision detection, the contact point location is isolated using a combination of the residual method based on the generalized momentum with a contact particle filter (CPF) scheme. We show for the first time a successful implementation of such combination on a real robot, without relying on joint torque sensor measurements.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collision Detection and Contact Point Estimation Using Virtual Joint Torque Sensing Applied to a Cobot\",\"authors\":\"Dario Zurlo, T. Heitmann, M. Morlock, Alessandro De Luca\",\"doi\":\"10.1109/ICRA48891.2023.10160661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In physical human-robot interaction (pHRI) it is essential to reliably estimate and localize contact forces between the robot and the environment. In this paper, a complete contact detection, isolation, and reaction scheme is presented and tested on a new 6-dof industrial collaborative robot. We combine two popular methods, based on monitoring energy and generalized momentum, to detect and isolate collisions on the whole robot body in a more robust way. The experimental results show the effectiveness of our implementation on the LARA 5 cobot, that only relies on motor current and joint encoder measurements. For validation purposes, contact forces are also measured using an external GTE CoboSafe sensor. After a successful collision detection, the contact point location is isolated using a combination of the residual method based on the generalized momentum with a contact particle filter (CPF) scheme. We show for the first time a successful implementation of such combination on a real robot, without relying on joint torque sensor measurements.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10160661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10160661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collision Detection and Contact Point Estimation Using Virtual Joint Torque Sensing Applied to a Cobot
In physical human-robot interaction (pHRI) it is essential to reliably estimate and localize contact forces between the robot and the environment. In this paper, a complete contact detection, isolation, and reaction scheme is presented and tested on a new 6-dof industrial collaborative robot. We combine two popular methods, based on monitoring energy and generalized momentum, to detect and isolate collisions on the whole robot body in a more robust way. The experimental results show the effectiveness of our implementation on the LARA 5 cobot, that only relies on motor current and joint encoder measurements. For validation purposes, contact forces are also measured using an external GTE CoboSafe sensor. After a successful collision detection, the contact point location is isolated using a combination of the residual method based on the generalized momentum with a contact particle filter (CPF) scheme. We show for the first time a successful implementation of such combination on a real robot, without relying on joint torque sensor measurements.