实现波动率预测:通过金融词嵌入的机器学习

Eghbal Rahimikia, S. Zohren, S. Poon
{"title":"实现波动率预测:通过金融词嵌入的机器学习","authors":"Eghbal Rahimikia, S. Zohren, S. Poon","doi":"10.2139/ssrn.3895272","DOIUrl":null,"url":null,"abstract":"We develop FinText, a novel, state-of-the-art, financial word embedding from Dow Jones Newswires Text News Feed Database. Incorporating this word embedding in a machine learning model produces a substantial increase in volatility forecasting performance on days with volatility jumps for 23 NASDAQ stocks from 27 July 2007 to 18 November 2016. A simple ensemble model, combining our word embedding and another machine learning model that uses limit order book data, provides the best forecasting performance for both normal and jump volatility days. Finally, we use Integrated Gradients and SHAP (SHapley Additive exPlanations) to make the results more 'explainable' and the model comparisons more transparent.","PeriodicalId":130177,"journal":{"name":"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Realised Volatility Forecasting: Machine Learning via Financial Word Embedding\",\"authors\":\"Eghbal Rahimikia, S. Zohren, S. Poon\",\"doi\":\"10.2139/ssrn.3895272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop FinText, a novel, state-of-the-art, financial word embedding from Dow Jones Newswires Text News Feed Database. Incorporating this word embedding in a machine learning model produces a substantial increase in volatility forecasting performance on days with volatility jumps for 23 NASDAQ stocks from 27 July 2007 to 18 November 2016. A simple ensemble model, combining our word embedding and another machine learning model that uses limit order book data, provides the best forecasting performance for both normal and jump volatility days. Finally, we use Integrated Gradients and SHAP (SHapley Additive exPlanations) to make the results more 'explainable' and the model comparisons more transparent.\",\"PeriodicalId\":130177,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3895272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3895272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们开发FinText,一个新颖的,最先进的,金融词嵌入道琼斯通讯社文本新闻信息流数据库。将这个词嵌入到机器学习模型中,在2007年7月27日至2016年11月18日期间,23只纳斯达克股票的波动率大幅上升的日子里,波动率预测的表现大幅提高。一个简单的集成模型,结合我们的词嵌入和另一个使用限价订单数据的机器学习模型,为正常和跳跃波动日提供了最好的预测性能。最后,我们使用集成梯度和SHAP (SHapley加性解释)使结果更“可解释”,模型比较更透明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realised Volatility Forecasting: Machine Learning via Financial Word Embedding
We develop FinText, a novel, state-of-the-art, financial word embedding from Dow Jones Newswires Text News Feed Database. Incorporating this word embedding in a machine learning model produces a substantial increase in volatility forecasting performance on days with volatility jumps for 23 NASDAQ stocks from 27 July 2007 to 18 November 2016. A simple ensemble model, combining our word embedding and another machine learning model that uses limit order book data, provides the best forecasting performance for both normal and jump volatility days. Finally, we use Integrated Gradients and SHAP (SHapley Additive exPlanations) to make the results more 'explainable' and the model comparisons more transparent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信