基于企业数据库的日本并购分类:基于预测的基础研究

Bohua Shao, K. Asatani, I. Sakata
{"title":"基于企业数据库的日本并购分类:基于预测的基础研究","authors":"Bohua Shao, K. Asatani, I. Sakata","doi":"10.1109/IEEM.2018.8607408","DOIUrl":null,"url":null,"abstract":"Mergers and Acquisitions (M&A) are recognized important strategy for corporate growth. In practice, M&A business consumes much energy and M&A success rate is not high. Hence, scientific M&A recommendation research is needed under such condition. This paper, focusing on M&A categorization, is a fundamental research for M&A prediction and recommendation. In this paper, we used M&A data, financial data and corporate data for M&A analysis. Based on them, we designed 13 features and used K-means clustering to separate M&A cases. The 13 features are of acquirer features, target features and their relationship features. We grouped M&A cases into 5 clusters and found different characteristics in these 5 clusters. Results in this paper show that these features will be effective for future M&A prediction and recommendation.","PeriodicalId":119238,"journal":{"name":"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Categorization of Mergers and Acquisitions in Japan Using Corporate Databases: A Fundamental Research for Prediction\",\"authors\":\"Bohua Shao, K. Asatani, I. Sakata\",\"doi\":\"10.1109/IEEM.2018.8607408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mergers and Acquisitions (M&A) are recognized important strategy for corporate growth. In practice, M&A business consumes much energy and M&A success rate is not high. Hence, scientific M&A recommendation research is needed under such condition. This paper, focusing on M&A categorization, is a fundamental research for M&A prediction and recommendation. In this paper, we used M&A data, financial data and corporate data for M&A analysis. Based on them, we designed 13 features and used K-means clustering to separate M&A cases. The 13 features are of acquirer features, target features and their relationship features. We grouped M&A cases into 5 clusters and found different characteristics in these 5 clusters. Results in this paper show that these features will be effective for future M&A prediction and recommendation.\",\"PeriodicalId\":119238,\"journal\":{\"name\":\"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEM.2018.8607408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2018.8607408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

并购是公认的企业发展的重要战略。在实践中,并购业务耗费大量精力,并购成功率不高。因此,在这种情况下,需要进行科学的并购推荐研究。本文的研究重点是并购分类,是对并购预测和推荐的基础性研究。本文采用并购数据、财务数据和企业数据进行并购分析。在此基础上,我们设计了13个特征,并使用K-means聚类对并购案例进行分离。这13个特征是收购者特征、目标特征和它们之间的关系特征。我们将并购案例分为5类,并发现了这5类案例的不同特征。本文的研究结果表明,这些特征对未来的并购预测和推荐是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Categorization of Mergers and Acquisitions in Japan Using Corporate Databases: A Fundamental Research for Prediction
Mergers and Acquisitions (M&A) are recognized important strategy for corporate growth. In practice, M&A business consumes much energy and M&A success rate is not high. Hence, scientific M&A recommendation research is needed under such condition. This paper, focusing on M&A categorization, is a fundamental research for M&A prediction and recommendation. In this paper, we used M&A data, financial data and corporate data for M&A analysis. Based on them, we designed 13 features and used K-means clustering to separate M&A cases. The 13 features are of acquirer features, target features and their relationship features. We grouped M&A cases into 5 clusters and found different characteristics in these 5 clusters. Results in this paper show that these features will be effective for future M&A prediction and recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信