Youness Trachi, E. Elbouchikhi, V. Choqueuse, M. Benbouzid
{"title":"基于子空间方法的异步电机定子电流分析","authors":"Youness Trachi, E. Elbouchikhi, V. Choqueuse, M. Benbouzid","doi":"10.1109/IECON.2015.7392639","DOIUrl":null,"url":null,"abstract":"This paper aims to develop a condition monitoring architecture for induction machines, with focus on bearing faults. The main objective of this paper is to identify fault signatures at an early stage by using high-resolution frequency estimation techniques. In particular, we present two subspace methods, which are Root-MUSIC and ESPRIT. Once the frequencies are determined, the amplitude estimation is obtained by using the Least Squares Estimator (LSE). Finally, the amplitude estimation is used to derive a fault severity criterion. The experimental results show that the proposed architecture has the ability to measure the faults severity.","PeriodicalId":190550,"journal":{"name":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stator current analysis by subspace methods for fault detection in induction machines\",\"authors\":\"Youness Trachi, E. Elbouchikhi, V. Choqueuse, M. Benbouzid\",\"doi\":\"10.1109/IECON.2015.7392639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to develop a condition monitoring architecture for induction machines, with focus on bearing faults. The main objective of this paper is to identify fault signatures at an early stage by using high-resolution frequency estimation techniques. In particular, we present two subspace methods, which are Root-MUSIC and ESPRIT. Once the frequencies are determined, the amplitude estimation is obtained by using the Least Squares Estimator (LSE). Finally, the amplitude estimation is used to derive a fault severity criterion. The experimental results show that the proposed architecture has the ability to measure the faults severity.\",\"PeriodicalId\":190550,\"journal\":{\"name\":\"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2015.7392639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2015.7392639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stator current analysis by subspace methods for fault detection in induction machines
This paper aims to develop a condition monitoring architecture for induction machines, with focus on bearing faults. The main objective of this paper is to identify fault signatures at an early stage by using high-resolution frequency estimation techniques. In particular, we present two subspace methods, which are Root-MUSIC and ESPRIT. Once the frequencies are determined, the amplitude estimation is obtained by using the Least Squares Estimator (LSE). Finally, the amplitude estimation is used to derive a fault severity criterion. The experimental results show that the proposed architecture has the ability to measure the faults severity.