短期负荷预测的几种方法比较

Mingsui Sun, Mahsa Ghorbani, Edwin K P Chong, S. Suryanarayanan
{"title":"短期负荷预测的几种方法比较","authors":"Mingsui Sun, Mahsa Ghorbani, Edwin K P Chong, S. Suryanarayanan","doi":"10.1109/NAPS46351.2019.8999984","DOIUrl":null,"url":null,"abstract":"We present five methods for probabilistic short-term load forecasting, namely, Bayesian estimation, a rank-reduction method based on principal component analysis, least absolute shrinkage and selection operator (Lasso) estimation, ridge regression, and a supervised learning approach called scaled conjugate gradient neural network. We aim to incorporate the load and temperature effects directly in these methods to reflect hourly patterns of electrical demand. We provide empirical results based on data sets used in the Global Energy Forecasting Competition 2014 and show that ridge regression has a marginal advantage over the other methods.","PeriodicalId":175719,"journal":{"name":"2019 North American Power Symposium (NAPS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Comparison of Multiple Methods for Short-Term Load Forecasting\",\"authors\":\"Mingsui Sun, Mahsa Ghorbani, Edwin K P Chong, S. Suryanarayanan\",\"doi\":\"10.1109/NAPS46351.2019.8999984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present five methods for probabilistic short-term load forecasting, namely, Bayesian estimation, a rank-reduction method based on principal component analysis, least absolute shrinkage and selection operator (Lasso) estimation, ridge regression, and a supervised learning approach called scaled conjugate gradient neural network. We aim to incorporate the load and temperature effects directly in these methods to reflect hourly patterns of electrical demand. We provide empirical results based on data sets used in the Global Energy Forecasting Competition 2014 and show that ridge regression has a marginal advantage over the other methods.\",\"PeriodicalId\":175719,\"journal\":{\"name\":\"2019 North American Power Symposium (NAPS)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS46351.2019.8999984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS46351.2019.8999984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了五种概率短期负荷预测方法,即贝叶斯估计、基于主成分分析的秩约简方法、最小绝对收缩和选择算子(Lasso)估计、岭回归和一种称为尺度共轭梯度神经网络的监督学习方法。我们的目标是在这些方法中直接纳入负荷和温度的影响,以反映每小时的电力需求模式。我们提供了基于2014年全球能源预测竞赛中使用的数据集的实证结果,并表明岭回归比其他方法具有边际优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Multiple Methods for Short-Term Load Forecasting
We present five methods for probabilistic short-term load forecasting, namely, Bayesian estimation, a rank-reduction method based on principal component analysis, least absolute shrinkage and selection operator (Lasso) estimation, ridge regression, and a supervised learning approach called scaled conjugate gradient neural network. We aim to incorporate the load and temperature effects directly in these methods to reflect hourly patterns of electrical demand. We provide empirical results based on data sets used in the Global Energy Forecasting Competition 2014 and show that ridge regression has a marginal advantage over the other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信