自适应软件返青计划的非参数预测推理

K. Rinsaka, T. Dohi
{"title":"自适应软件返青计划的非参数预测推理","authors":"K. Rinsaka, T. Dohi","doi":"10.1109/ISSREW.2008.5355521","DOIUrl":null,"url":null,"abstract":"In this paper we develop an adaptive approach to estimate the optimal preventive rejuvenation schedule which maximizes the steady-state system availability. We formulate the upper and lower bounds of the predictive system availability using the one-look ahead predictive survival function from system failure time data, and derive the pessimistic and optimistic rejuvenation policies. Then, we derive adaptive rejuvenation policies from the original data together with a right-censored observation.","PeriodicalId":436527,"journal":{"name":"2008 IEEE International Conference on Software Reliability Engineering Workshops (ISSRE Wksp)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-parametric predictive inference of adaptive software rejuvenation schedule\",\"authors\":\"K. Rinsaka, T. Dohi\",\"doi\":\"10.1109/ISSREW.2008.5355521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop an adaptive approach to estimate the optimal preventive rejuvenation schedule which maximizes the steady-state system availability. We formulate the upper and lower bounds of the predictive system availability using the one-look ahead predictive survival function from system failure time data, and derive the pessimistic and optimistic rejuvenation policies. Then, we derive adaptive rejuvenation policies from the original data together with a right-censored observation.\",\"PeriodicalId\":436527,\"journal\":{\"name\":\"2008 IEEE International Conference on Software Reliability Engineering Workshops (ISSRE Wksp)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Software Reliability Engineering Workshops (ISSRE Wksp)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSREW.2008.5355521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Software Reliability Engineering Workshops (ISSRE Wksp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW.2008.5355521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种自适应方法来估计使稳态系统可用性最大化的最优预防性复壮计划。利用基于故障时间数据的预测生存函数,给出了预测系统可用性的上界和下界,并推导出了悲观和乐观的恢复策略。然后,我们从原始数据和右删减观测中得出适应性复兴策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-parametric predictive inference of adaptive software rejuvenation schedule
In this paper we develop an adaptive approach to estimate the optimal preventive rejuvenation schedule which maximizes the steady-state system availability. We formulate the upper and lower bounds of the predictive system availability using the one-look ahead predictive survival function from system failure time data, and derive the pessimistic and optimistic rejuvenation policies. Then, we derive adaptive rejuvenation policies from the original data together with a right-censored observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信