条件风险值:优化算法和应用

S. Uryasev
{"title":"条件风险值:优化算法和应用","authors":"S. Uryasev","doi":"10.1109/CIFER.2000.844598","DOIUrl":null,"url":null,"abstract":"This article has outlined a new approach for the simultaneous calculation of value-at-risk (VaR) and optimization of conditional VaR (CVaR) for a broad class of problems. We have shown that CVaR can be efficiently minimized using LP techniques. Our numerical experiments show that CVaR optimal portfolios are near optimal in VaR terms, i.e., VaR cannot be reduced further more than a few percent. Also, CVaR constraints can be handled efficiently using equivalent linear constraints, which dramatically improves the efficiency of the optimization techniques.","PeriodicalId":308591,"journal":{"name":"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"443","resultStr":"{\"title\":\"Conditional value-at-risk: optimization algorithms and applications\",\"authors\":\"S. Uryasev\",\"doi\":\"10.1109/CIFER.2000.844598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article has outlined a new approach for the simultaneous calculation of value-at-risk (VaR) and optimization of conditional VaR (CVaR) for a broad class of problems. We have shown that CVaR can be efficiently minimized using LP techniques. Our numerical experiments show that CVaR optimal portfolios are near optimal in VaR terms, i.e., VaR cannot be reduced further more than a few percent. Also, CVaR constraints can be handled efficiently using equivalent linear constraints, which dramatically improves the efficiency of the optimization techniques.\",\"PeriodicalId\":308591,\"journal\":{\"name\":\"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"443\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIFER.2000.844598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFER.2000.844598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 443

摘要

本文概述了一种同时计算风险价值(VaR)和优化条件VaR (CVaR)的新方法,用于解决一类广泛的问题。我们已经证明,使用LP技术可以有效地最小化CVaR。我们的数值实验表明,CVaR最优投资组合在VaR方面接近最优,即VaR不能进一步降低超过几个百分点。此外,CVaR约束可以使用等效线性约束有效地处理,这大大提高了优化技术的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional value-at-risk: optimization algorithms and applications
This article has outlined a new approach for the simultaneous calculation of value-at-risk (VaR) and optimization of conditional VaR (CVaR) for a broad class of problems. We have shown that CVaR can be efficiently minimized using LP techniques. Our numerical experiments show that CVaR optimal portfolios are near optimal in VaR terms, i.e., VaR cannot be reduced further more than a few percent. Also, CVaR constraints can be handled efficiently using equivalent linear constraints, which dramatically improves the efficiency of the optimization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信