{"title":"无人机视觉定位的多源图像匹配网络","authors":"C. Li, Ganchao Liu, Yuan Yuan","doi":"10.1109/ICIP46576.2022.9897631","DOIUrl":null,"url":null,"abstract":"Visual localization is an important but challenging task for unmanned aerial vehicles (UAV). Matching real-time UAV orthophotos to pre-existing georeferenced satellite images is the key problem for this task. However, UAV and satellite images are inconsistent in image styles, perspectives, and times. In this paper, a new fully convolutional siamese network is proposed to extract similar features for multi-source images. The Squeeze-and-Excitation structure is integrated into the densely connected network to adapt to multi-scale features and the texture differences of different regions. Besides, a loss function with a progressive sampling strategy is utilized to mine the similarity of matching multi-source images and improve the description compactness among dimensions. Extensive experimental results with in-depth analysis are provided, which indicate that the proposed framework can significantly improve the matching performance of the learned descriptor.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Source Image Matching Network for UAV Visual Location\",\"authors\":\"C. Li, Ganchao Liu, Yuan Yuan\",\"doi\":\"10.1109/ICIP46576.2022.9897631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual localization is an important but challenging task for unmanned aerial vehicles (UAV). Matching real-time UAV orthophotos to pre-existing georeferenced satellite images is the key problem for this task. However, UAV and satellite images are inconsistent in image styles, perspectives, and times. In this paper, a new fully convolutional siamese network is proposed to extract similar features for multi-source images. The Squeeze-and-Excitation structure is integrated into the densely connected network to adapt to multi-scale features and the texture differences of different regions. Besides, a loss function with a progressive sampling strategy is utilized to mine the similarity of matching multi-source images and improve the description compactness among dimensions. Extensive experimental results with in-depth analysis are provided, which indicate that the proposed framework can significantly improve the matching performance of the learned descriptor.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multi-Source Image Matching Network for UAV Visual Location
Visual localization is an important but challenging task for unmanned aerial vehicles (UAV). Matching real-time UAV orthophotos to pre-existing georeferenced satellite images is the key problem for this task. However, UAV and satellite images are inconsistent in image styles, perspectives, and times. In this paper, a new fully convolutional siamese network is proposed to extract similar features for multi-source images. The Squeeze-and-Excitation structure is integrated into the densely connected network to adapt to multi-scale features and the texture differences of different regions. Besides, a loss function with a progressive sampling strategy is utilized to mine the similarity of matching multi-source images and improve the description compactness among dimensions. Extensive experimental results with in-depth analysis are provided, which indicate that the proposed framework can significantly improve the matching performance of the learned descriptor.