用于更好成像算法的噪声和信号活动图

P. Kisilev, D. Shaked, Suk Hwan Lim
{"title":"用于更好成像算法的噪声和信号活动图","authors":"P. Kisilev, D. Shaked, Suk Hwan Lim","doi":"10.1109/ICIP.2007.4379106","DOIUrl":null,"url":null,"abstract":"In this work, we propose noise and signal activity estimation method that discriminates noise from signal based on local and global properties of the image data. The method yields pixel-wise maps of the noise variance and of the signal activity. Using these maps to guide imaging algorithms such as image enhancement and print defect detection improves their performance. The proposed method does not assume a white Gaussian noise model; it is very efficient computationally and, as such, is useful for a wide variety of applications.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Noise and Signal Activity Maps for Better Imaging Algorithms\",\"authors\":\"P. Kisilev, D. Shaked, Suk Hwan Lim\",\"doi\":\"10.1109/ICIP.2007.4379106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose noise and signal activity estimation method that discriminates noise from signal based on local and global properties of the image data. The method yields pixel-wise maps of the noise variance and of the signal activity. Using these maps to guide imaging algorithms such as image enhancement and print defect detection improves their performance. The proposed method does not assume a white Gaussian noise model; it is very efficient computationally and, as such, is useful for a wide variety of applications.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在这项工作中,我们提出了噪声和信号活动估计方法,该方法根据图像数据的局部和全局属性区分噪声和信号。该方法产生噪声方差和信号活动的逐像素映射。使用这些图来指导成像算法,如图像增强和打印缺陷检测,可以提高它们的性能。该方法不假设高斯白噪声模型;它在计算上非常高效,因此对各种各样的应用程序都很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise and Signal Activity Maps for Better Imaging Algorithms
In this work, we propose noise and signal activity estimation method that discriminates noise from signal based on local and global properties of the image data. The method yields pixel-wise maps of the noise variance and of the signal activity. Using these maps to guide imaging algorithms such as image enhancement and print defect detection improves their performance. The proposed method does not assume a white Gaussian noise model; it is very efficient computationally and, as such, is useful for a wide variety of applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信