M. Akbar, Darmatasia Darmatasia, Mustikasari Mustikasari, Muhammad Syahwal
{"title":"使用k -均值算法对TWITTER上人们的大规模社会限制的集群文本分析","authors":"M. Akbar, Darmatasia Darmatasia, Mustikasari Mustikasari, Muhammad Syahwal","doi":"10.24252/insypro.v6i1.23325","DOIUrl":null,"url":null,"abstract":"Virus corona (COVID-19) ditetapkan sebagai pandemi oleh WHO (World Health Organization atau Badan Kesehatan Dunia) karena penyebarannya yang terus meningkat dan telah mencapai sebagian besar negara di dunia, termasuk Indonesia. Setiap negara dituntut dapat lebih agresif dalam mengambil tindakan pencegahan dan perawatan. Pemerintah Indonesia sendiri mengeluarkan kebijakan berupa wajib masker, jam malam, serta PSBB (Pembatasan Sosial Berskala Besar) guna menekan laju menyebaran COVID-19. Namun kebijakan tersebut menuai tanggapan pro dan kontra dari masyarakat khususnya melalui media sosial, di satu sisi PSBB dianggap mampu menekan laju penyebaran COVID-19 namun di sisi lain PSBB dianggap akan memperburuk kondisi perekonomian masyarakat, khususnya golongan menengah bawah. Penelitian ini bertujuan untuk mengelompokkan tanggapan masyarakat mengenai PSBB di twitter ke dalam beberapa cluster, tanggapan yang berada dalam satu cluster yang sama dianggap memiliki topik atau karakteristik pembahasan yang serupa dan sebaliknya, sehingga dapat memberi insight tambahan pada pihak pemerintah dalam mengevaluasi kebijakannya. Algoritma K-Means digunakan untuk mengelompokkan tanggapan yang memiliki kesamaan karakteristik sebab terbukti memiliki tingkat akurasi yang tinggi dengan waktu eksekusi yang relatif cepat karena bersifat linear. Penelitian ini menghasilkan 4 cluster berbeda dengan mengunakan metode Elbow dalam penentuan jumlah K pada algoritma K-Means dan nilai SSE (Sum of Square Error) sebagai parameter evaluasinya. ","PeriodicalId":199754,"journal":{"name":"Jurnal INSYPRO (Information System and Processing)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALISIS CLUSTERING TEKS TANGGAPAN MASYARAKAT DI TWITTER TERHADAP PEMBATASAN SOSIAL BERSKALA BESAR MENGGUNAKAN ALGORITMA K-MEANS\",\"authors\":\"M. Akbar, Darmatasia Darmatasia, Mustikasari Mustikasari, Muhammad Syahwal\",\"doi\":\"10.24252/insypro.v6i1.23325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virus corona (COVID-19) ditetapkan sebagai pandemi oleh WHO (World Health Organization atau Badan Kesehatan Dunia) karena penyebarannya yang terus meningkat dan telah mencapai sebagian besar negara di dunia, termasuk Indonesia. Setiap negara dituntut dapat lebih agresif dalam mengambil tindakan pencegahan dan perawatan. Pemerintah Indonesia sendiri mengeluarkan kebijakan berupa wajib masker, jam malam, serta PSBB (Pembatasan Sosial Berskala Besar) guna menekan laju menyebaran COVID-19. Namun kebijakan tersebut menuai tanggapan pro dan kontra dari masyarakat khususnya melalui media sosial, di satu sisi PSBB dianggap mampu menekan laju penyebaran COVID-19 namun di sisi lain PSBB dianggap akan memperburuk kondisi perekonomian masyarakat, khususnya golongan menengah bawah. Penelitian ini bertujuan untuk mengelompokkan tanggapan masyarakat mengenai PSBB di twitter ke dalam beberapa cluster, tanggapan yang berada dalam satu cluster yang sama dianggap memiliki topik atau karakteristik pembahasan yang serupa dan sebaliknya, sehingga dapat memberi insight tambahan pada pihak pemerintah dalam mengevaluasi kebijakannya. Algoritma K-Means digunakan untuk mengelompokkan tanggapan yang memiliki kesamaan karakteristik sebab terbukti memiliki tingkat akurasi yang tinggi dengan waktu eksekusi yang relatif cepat karena bersifat linear. Penelitian ini menghasilkan 4 cluster berbeda dengan mengunakan metode Elbow dalam penentuan jumlah K pada algoritma K-Means dan nilai SSE (Sum of Square Error) sebagai parameter evaluasinya. \",\"PeriodicalId\":199754,\"journal\":{\"name\":\"Jurnal INSYPRO (Information System and Processing)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal INSYPRO (Information System and Processing)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24252/insypro.v6i1.23325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal INSYPRO (Information System and Processing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24252/insypro.v6i1.23325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
日冕病毒(COVID-19)之所以被世界卫生组织(World Health Organization)列为世界卫生组织(World Health Organization)的流行病,是因为它的传播稳步增加,已经蔓延到世界上大多数国家,包括印度尼西亚。每个国家都需要更加积极地采取预防措施和治疗措施。印尼政府自己发布了要求戴口罩、宵禁和PSBB(大规模社会限制)的政策,以遏制COVID-19的蔓延。然而,这一政策正通过社交媒体获得公众的支持和反对意见,而PSBB一方面被认为能够遏制COVID-19的流行,另一方面则被认为会加剧人民的经济状况,尤其是中产阶级。该研究的目的是将公众对twitter上PSBB的反应分组为多个集群,而在同一集群中的反应则被认为具有类似的主题或讨论特征,否则将为政府评估其政策提供额外的见解。k -手段算法被用来对具有特征相似性的反应进行分组,因为它们被证明具有相对快速执行时间的高准确性。这项研究产生了4个集群,而不是用梯形方法来确定K的计数和用于评估参数的总和。
ANALISIS CLUSTERING TEKS TANGGAPAN MASYARAKAT DI TWITTER TERHADAP PEMBATASAN SOSIAL BERSKALA BESAR MENGGUNAKAN ALGORITMA K-MEANS
Virus corona (COVID-19) ditetapkan sebagai pandemi oleh WHO (World Health Organization atau Badan Kesehatan Dunia) karena penyebarannya yang terus meningkat dan telah mencapai sebagian besar negara di dunia, termasuk Indonesia. Setiap negara dituntut dapat lebih agresif dalam mengambil tindakan pencegahan dan perawatan. Pemerintah Indonesia sendiri mengeluarkan kebijakan berupa wajib masker, jam malam, serta PSBB (Pembatasan Sosial Berskala Besar) guna menekan laju menyebaran COVID-19. Namun kebijakan tersebut menuai tanggapan pro dan kontra dari masyarakat khususnya melalui media sosial, di satu sisi PSBB dianggap mampu menekan laju penyebaran COVID-19 namun di sisi lain PSBB dianggap akan memperburuk kondisi perekonomian masyarakat, khususnya golongan menengah bawah. Penelitian ini bertujuan untuk mengelompokkan tanggapan masyarakat mengenai PSBB di twitter ke dalam beberapa cluster, tanggapan yang berada dalam satu cluster yang sama dianggap memiliki topik atau karakteristik pembahasan yang serupa dan sebaliknya, sehingga dapat memberi insight tambahan pada pihak pemerintah dalam mengevaluasi kebijakannya. Algoritma K-Means digunakan untuk mengelompokkan tanggapan yang memiliki kesamaan karakteristik sebab terbukti memiliki tingkat akurasi yang tinggi dengan waktu eksekusi yang relatif cepat karena bersifat linear. Penelitian ini menghasilkan 4 cluster berbeda dengan mengunakan metode Elbow dalam penentuan jumlah K pada algoritma K-Means dan nilai SSE (Sum of Square Error) sebagai parameter evaluasinya.