具有马尔可夫跳变和乘性噪声的离散系统的鲁棒H2/H∞控制:无限视界情况

Ting Hou, Weihai Zhang, Hongji Ma
{"title":"具有马尔可夫跳变和乘性噪声的离散系统的鲁棒H2/H∞控制:无限视界情况","authors":"Ting Hou, Weihai Zhang, Hongji Ma","doi":"10.1109/ICCA.2013.6564873","DOIUrl":null,"url":null,"abstract":"This paper is focused on an infinite horizon H2/H∞ control problem for a broad class of discrete-time Markov jump systems with (x, u, v)-dependent noise. Above all, we develop a stochastic Popov-Belevich-Hautus (PBH) criterion for checking exact detectability. By which, an extended Lyapunov stability theorem is established in terms of a generalized Lyapunov equation. Further, a necessary and sufficient condition is presented for the existence of a state feedback H2/H∞ controller on the basis of four coupled matrix Riccati equations, which can be solved numerically by a backward iterative algorithm. Finally, a numerical example is supplied to illustrate the proposed theoretical results.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust H2/H∞ control for discrete-time systems with Markovian jumps and multiplicative noise: Infinite horizon case\",\"authors\":\"Ting Hou, Weihai Zhang, Hongji Ma\",\"doi\":\"10.1109/ICCA.2013.6564873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on an infinite horizon H2/H∞ control problem for a broad class of discrete-time Markov jump systems with (x, u, v)-dependent noise. Above all, we develop a stochastic Popov-Belevich-Hautus (PBH) criterion for checking exact detectability. By which, an extended Lyapunov stability theorem is established in terms of a generalized Lyapunov equation. Further, a necessary and sufficient condition is presented for the existence of a state feedback H2/H∞ controller on the basis of four coupled matrix Riccati equations, which can be solved numerically by a backward iterative algorithm. Finally, a numerical example is supplied to illustrate the proposed theoretical results.\",\"PeriodicalId\":336534,\"journal\":{\"name\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2013.6564873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6564873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有(x, u, v)依赖噪声的广义离散马尔可夫跳变系统的无限视界H2/H∞控制问题。首先,我们建立了一个随机的Popov-Belevich-Hautus (PBH)准则来检验精确的可检测性。由此,用广义李雅普诺夫方程建立了一个扩展的李雅普诺夫稳定性定理。进一步给出了基于四耦合矩阵Riccati方程的状态反馈H2/H∞控制器存在的充分必要条件,该控制器可通过反向迭代算法进行数值求解。最后,给出了一个数值算例来说明所提出的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust H2/H∞ control for discrete-time systems with Markovian jumps and multiplicative noise: Infinite horizon case
This paper is focused on an infinite horizon H2/H∞ control problem for a broad class of discrete-time Markov jump systems with (x, u, v)-dependent noise. Above all, we develop a stochastic Popov-Belevich-Hautus (PBH) criterion for checking exact detectability. By which, an extended Lyapunov stability theorem is established in terms of a generalized Lyapunov equation. Further, a necessary and sufficient condition is presented for the existence of a state feedback H2/H∞ controller on the basis of four coupled matrix Riccati equations, which can be solved numerically by a backward iterative algorithm. Finally, a numerical example is supplied to illustrate the proposed theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信