基于弹性状态表的细粒度状态数据分析方法

Jike Ge, Wenbo He, Zuqin Chen, Can Liu, Jun Peng, Guorong Chen
{"title":"基于弹性状态表的细粒度状态数据分析方法","authors":"Jike Ge, Wenbo He, Zuqin Chen, Can Liu, Jun Peng, Guorong Chen","doi":"10.4018/IJSSCI.2018040105","DOIUrl":null,"url":null,"abstract":"Thisarticledescribeshowstatefuldataanalyticframeworkshaveemergedtoprovidefreshandlowlatencyresultsforbigdataprocessing.Atpresent,itisdesiredtoachievethefine-graineddatamodel inSparkdataprocessingframework.However,Sparkadoptscoarse-graineddatamodelinorderto facilitateparallelization,itischallengingindealingwiththefine-graineddataaccessinstatefuldata analytics.Inthispaper,theauthorsintroduceafine-grainedstatefuldatacomponent,ResilientState Table(RST),toSparkframework.Forfillingthegapbetweenthecoarse-graineddatamodelinSpark andthefine-graineddataaccessrequirementsinstatefuldataanalytics,theydevisetheprogramming model of RST which interacts with Spark’s coarse-grained memory representation seamlessly, andenableuserstoquery/updatethestateentriesinfinegranularitywithSpark-likeprogramming interfaces.Performanceevaluationexperimentsinvariousapplicationfieldsdemonstratethattheir proposedsolutionachievestheimprovementsinlatency,fault-tolerance,aswellasscalability. KeywoRDS Big Data, Resilient Distributed Dataset, Resilient State Table, Spark, Stateful Data Analytics","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"18 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Fine-Grained Stateful Data Analytics Method Based on Resilient State Table\",\"authors\":\"Jike Ge, Wenbo He, Zuqin Chen, Can Liu, Jun Peng, Guorong Chen\",\"doi\":\"10.4018/IJSSCI.2018040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thisarticledescribeshowstatefuldataanalyticframeworkshaveemergedtoprovidefreshandlowlatencyresultsforbigdataprocessing.Atpresent,itisdesiredtoachievethefine-graineddatamodel inSparkdataprocessingframework.However,Sparkadoptscoarse-graineddatamodelinorderto facilitateparallelization,itischallengingindealingwiththefine-graineddataaccessinstatefuldata analytics.Inthispaper,theauthorsintroduceafine-grainedstatefuldatacomponent,ResilientState Table(RST),toSparkframework.Forfillingthegapbetweenthecoarse-graineddatamodelinSpark andthefine-graineddataaccessrequirementsinstatefuldataanalytics,theydevisetheprogramming model of RST which interacts with Spark’s coarse-grained memory representation seamlessly, andenableuserstoquery/updatethestateentriesinfinegranularitywithSpark-likeprogramming interfaces.Performanceevaluationexperimentsinvariousapplicationfieldsdemonstratethattheir proposedsolutionachievestheimprovementsinlatency,fault-tolerance,aswellasscalability. KeywoRDS Big Data, Resilient Distributed Dataset, Resilient State Table, Spark, Stateful Data Analytics\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"18 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSSCI.2018040105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2018040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Thisarticledescribeshowstatefuldataanalyticframeworkshaveemergedtoprovidefreshandlowlatencyresultsforbigdataprocessing。Atpresent,itisdesiredtoachievethefine-graineddatamodel inSparkdataprocessingframework。However,Sparkadoptscoarse-graineddatamodelinorderto facilitateparallelization,itischallengingindealingwiththefine-graineddataaccessinstatefuldata分析。Inthispaper,theauthorsintroduceafine-grainedstatefuldatacomponent,ResilientState表(RST),toSparkframework。Forfillingthegapbetweenthecoarse-graineddatamodelinSpark andthefine-graineddataaccessrequirementsinstatefuldataanalytics,theydevisetheprogramming与Spark的粗粒度内存表示无缝交互的rst_模型,andenableuserstoquery/updatethestateentriesinfinegranularitywithSpark-likeprogramming接口。Performanceevaluationexperimentsinvariousapplicationfieldsdemonstratethattheir proposedsolutionachievestheimprovementsinlatency,fault-tolerance,aswellasscalability。关键词:大数据,弹性分布式数据集,弹性状态表,Spark,有状态数据分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fine-Grained Stateful Data Analytics Method Based on Resilient State Table
Thisarticledescribeshowstatefuldataanalyticframeworkshaveemergedtoprovidefreshandlowlatencyresultsforbigdataprocessing.Atpresent,itisdesiredtoachievethefine-graineddatamodel inSparkdataprocessingframework.However,Sparkadoptscoarse-graineddatamodelinorderto facilitateparallelization,itischallengingindealingwiththefine-graineddataaccessinstatefuldata analytics.Inthispaper,theauthorsintroduceafine-grainedstatefuldatacomponent,ResilientState Table(RST),toSparkframework.Forfillingthegapbetweenthecoarse-graineddatamodelinSpark andthefine-graineddataaccessrequirementsinstatefuldataanalytics,theydevisetheprogramming model of RST which interacts with Spark’s coarse-grained memory representation seamlessly, andenableuserstoquery/updatethestateentriesinfinegranularitywithSpark-likeprogramming interfaces.Performanceevaluationexperimentsinvariousapplicationfieldsdemonstratethattheir proposedsolutionachievestheimprovementsinlatency,fault-tolerance,aswellasscalability. KeywoRDS Big Data, Resilient Distributed Dataset, Resilient State Table, Spark, Stateful Data Analytics
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信