高速脉冲摄像机检测能力建模

Junwei Zhao, Zhaofei Yu, Lei Ma, Ziluo Ding, Shiliang Zhang, Yonghong Tian, Tiejun Huang
{"title":"高速脉冲摄像机检测能力建模","authors":"Junwei Zhao, Zhaofei Yu, Lei Ma, Ziluo Ding, Shiliang Zhang, Yonghong Tian, Tiejun Huang","doi":"10.1109/ICASSP43922.2022.9747018","DOIUrl":null,"url":null,"abstract":"The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling The Detection Capability Of High-Speed Spiking Cameras\",\"authors\":\"Junwei Zhao, Zhaofei Yu, Lei Ma, Ziluo Ding, Shiliang Zhang, Yonghong Tian, Tiejun Huang\",\"doi\":\"10.1109/ICASSP43922.2022.9747018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP43922.2022.9747018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP43922.2022.9747018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这种新颖的工作原理使尖峰相机能够捕捉高速移动的物体。然而,脉冲摄像机的应用会受到许多因素的影响,如亮度强度、可探测距离和移动目标的最大速度。环境亮度过弱、物体与相机距离过短等设置不当会导致此类相机的应用失败。为了解决这一问题,本文提出了一种研究尖峰摄像机检测能力的建模算法。该算法根据摄像头的基本技术参数(如像素大小、时空分辨率),推导出不同场景设置(如亮度强度、摄像头镜头、物机距离等)对应的峰值摄像头最大可检测速度。因此,可以确定用于各种应用的适当的相机设置。大量的实验验证了该建模算法的有效性。据我们所知,这是第一个研究脉冲摄像机探测能力的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling The Detection Capability Of High-Speed Spiking Cameras
The novel working principle enables spiking cameras to capture high-speed moving objects. However, the applications of spiking cameras can be affected by many factors, such as brightness intensity, detectable distance, and the maximum speed of moving targets. Improper settings such as weak ambient brightness and too short object-camera distance, will lead to failure in the application of such cameras. To address the issue, this paper proposes a modeling algorithm that studies the detection capability of spiking cameras. The algorithm deduces the maximum detectable speed of spiking cameras corresponding to different scenario settings (e.g., brightness intensity, camera lens, and object-camera distance) based on the basic technical parameters of cameras (e.g., pixel size, spatial and temporal resolution). Thereby, the proper camera settings for various applications can be determined. Extensive experiments verify the effectiveness of the modeling algorithm. To our best knowledge, it is the first work to investigate the detection capability of spiking cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信