S. Paternostro, T. Moore, C. Hill, J. Atkin, G. Maere, H. Morvan
{"title":"实现ARAIM技术的用户算法示例,用于完整性性能预测、程序开发和飞行前操作","authors":"S. Paternostro, T. Moore, C. Hill, J. Atkin, G. Maere, H. Morvan","doi":"10.1109/NAVITEC.2016.7849330","DOIUrl":null,"url":null,"abstract":"Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is a new Aircraft Based Augmentation System (ABAS) technique, firstly presented in the two reports of the GNSS Evolutionary Architecture Study (GEAS). The ARAIM technique offers the opportunity to enable GNSS receivers to serve as a primary means of navigation, worldwide, for precision approach down to LPV-200 operation, while at the same time potentially reducing the support which has to be provided by Ground and Satellite Based Augmented Systems (GBAS and SBAS).","PeriodicalId":228093,"journal":{"name":"2016 8th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examples of user algorithms implementing ARAIM techniques for integrity performance prediction, procedures development and pre-flight operations\",\"authors\":\"S. Paternostro, T. Moore, C. Hill, J. Atkin, G. Maere, H. Morvan\",\"doi\":\"10.1109/NAVITEC.2016.7849330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is a new Aircraft Based Augmentation System (ABAS) technique, firstly presented in the two reports of the GNSS Evolutionary Architecture Study (GEAS). The ARAIM technique offers the opportunity to enable GNSS receivers to serve as a primary means of navigation, worldwide, for precision approach down to LPV-200 operation, while at the same time potentially reducing the support which has to be provided by Ground and Satellite Based Augmented Systems (GBAS and SBAS).\",\"PeriodicalId\":228093,\"journal\":{\"name\":\"2016 8th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAVITEC.2016.7849330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAVITEC.2016.7849330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Examples of user algorithms implementing ARAIM techniques for integrity performance prediction, procedures development and pre-flight operations
Advanced Receiver Autonomous Integrity Monitoring (ARAIM) is a new Aircraft Based Augmentation System (ABAS) technique, firstly presented in the two reports of the GNSS Evolutionary Architecture Study (GEAS). The ARAIM technique offers the opportunity to enable GNSS receivers to serve as a primary means of navigation, worldwide, for precision approach down to LPV-200 operation, while at the same time potentially reducing the support which has to be provided by Ground and Satellite Based Augmented Systems (GBAS and SBAS).