雨雪条件下路面坑洼快速语义分割算法研究

Wangyuan Zhao, Wei Jiao, Yujian Ye, F. Han, Xinjie Qiu, Peng Xiao
{"title":"雨雪条件下路面坑洼快速语义分割算法研究","authors":"Wangyuan Zhao, Wei Jiao, Yujian Ye, F. Han, Xinjie Qiu, Peng Xiao","doi":"10.1117/12.2673500","DOIUrl":null,"url":null,"abstract":"To meet the speed and accuracy requirements of road semantics segmentation algorithm scenarios, a lightweight semantics segmentation model, MADNet, based on MobileNetV2, is presented, which effectively reduces the computational load of convolution neural network. The feature enhancement module uses a pooled pyramid of empty space convolution. In the deep and shallow part of the MADNet network, attention mechanism is added to compensate for the decline in feature extraction accuracy of MobileNetV2. Finally, the data enhancement algorithm is used to train the identification task in rain and snow weather, road depression and automobile dataset scenarios. The results of ablation test and algorithm comparison test verify that the algorithm proposed in this paper can achieve a better effect and faster speed for road depression and fast semantic segmentation of vehicles in rain and snow weather.","PeriodicalId":176918,"journal":{"name":"2nd International Conference on Digital Society and Intelligent Systems (DSInS 2022)","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on fast semantic segmentation algorithm of road potholes under rain and snow\",\"authors\":\"Wangyuan Zhao, Wei Jiao, Yujian Ye, F. Han, Xinjie Qiu, Peng Xiao\",\"doi\":\"10.1117/12.2673500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the speed and accuracy requirements of road semantics segmentation algorithm scenarios, a lightweight semantics segmentation model, MADNet, based on MobileNetV2, is presented, which effectively reduces the computational load of convolution neural network. The feature enhancement module uses a pooled pyramid of empty space convolution. In the deep and shallow part of the MADNet network, attention mechanism is added to compensate for the decline in feature extraction accuracy of MobileNetV2. Finally, the data enhancement algorithm is used to train the identification task in rain and snow weather, road depression and automobile dataset scenarios. The results of ablation test and algorithm comparison test verify that the algorithm proposed in this paper can achieve a better effect and faster speed for road depression and fast semantic segmentation of vehicles in rain and snow weather.\",\"PeriodicalId\":176918,\"journal\":{\"name\":\"2nd International Conference on Digital Society and Intelligent Systems (DSInS 2022)\",\"volume\":\"219 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd International Conference on Digital Society and Intelligent Systems (DSInS 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2673500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd International Conference on Digital Society and Intelligent Systems (DSInS 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2673500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为满足道路语义分割算法场景对速度和精度的要求,提出了一种基于MobileNetV2的轻量级语义分割模型MADNet,有效降低了卷积神经网络的计算量。特征增强模块使用空空间卷积的池金字塔。在MADNet网络的深层和浅层部分,增加了注意机制来弥补MobileNetV2特征提取精度的下降。最后,利用数据增强算法对雨雪天气、道路洼地和汽车数据集场景下的识别任务进行训练。消融测试和算法对比测试的结果验证了本文算法对于雨雪天气下道路凹陷和车辆快速语义分割的效果更好、速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on fast semantic segmentation algorithm of road potholes under rain and snow
To meet the speed and accuracy requirements of road semantics segmentation algorithm scenarios, a lightweight semantics segmentation model, MADNet, based on MobileNetV2, is presented, which effectively reduces the computational load of convolution neural network. The feature enhancement module uses a pooled pyramid of empty space convolution. In the deep and shallow part of the MADNet network, attention mechanism is added to compensate for the decline in feature extraction accuracy of MobileNetV2. Finally, the data enhancement algorithm is used to train the identification task in rain and snow weather, road depression and automobile dataset scenarios. The results of ablation test and algorithm comparison test verify that the algorithm proposed in this paper can achieve a better effect and faster speed for road depression and fast semantic segmentation of vehicles in rain and snow weather.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信