利用fpga快速、高效的生物光子模拟癌症治疗

Jeffrey Cassidy, L. Lilge, Vaughn Betz
{"title":"利用fpga快速、高效的生物光子模拟癌症治疗","authors":"Jeffrey Cassidy, L. Lilge, Vaughn Betz","doi":"10.1109/FCCM.2014.45","DOIUrl":null,"url":null,"abstract":"Biophotonics, the study of light propagation through living tissue, is important for many medical applications ranging from imaging and detection through therapy for conditions such as cancer. Effective medical use of light depends on simulating its propagation through highly-scattering tissue. Monte Carlo simulation of photon migration has been adopted as the “gold standard” for its ability to capture complicated geometries and model all of the relevant problem physics. This accuracy and generality comes at a high computational cost, which limits the technique's utility. Greatly generalizing previous work, we present the first and only hardware-accelerated Monte Carlo biophotonic simulator that can accept complicated geometries described by tetrahedral meshes. Implemented on an Altera Stratix V FPGA, it achieves high performance (4x) and extremely high energy efficiency (67x) compared to a tightly-optimized multi-threaded CPU implementation, with demonstrated potential to expand the performance gains even further to 15-20x, which would enable important clinical and research applications.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fast, Power-Efficient Biophotonic Simulations for Cancer Treatment Using FPGAs\",\"authors\":\"Jeffrey Cassidy, L. Lilge, Vaughn Betz\",\"doi\":\"10.1109/FCCM.2014.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biophotonics, the study of light propagation through living tissue, is important for many medical applications ranging from imaging and detection through therapy for conditions such as cancer. Effective medical use of light depends on simulating its propagation through highly-scattering tissue. Monte Carlo simulation of photon migration has been adopted as the “gold standard” for its ability to capture complicated geometries and model all of the relevant problem physics. This accuracy and generality comes at a high computational cost, which limits the technique's utility. Greatly generalizing previous work, we present the first and only hardware-accelerated Monte Carlo biophotonic simulator that can accept complicated geometries described by tetrahedral meshes. Implemented on an Altera Stratix V FPGA, it achieves high performance (4x) and extremely high energy efficiency (67x) compared to a tightly-optimized multi-threaded CPU implementation, with demonstrated potential to expand the performance gains even further to 15-20x, which would enable important clinical and research applications.\",\"PeriodicalId\":246162,\"journal\":{\"name\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2014.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

生物光子学,研究光在活组织中的传播,对许多医学应用都很重要,从成像和检测到癌症等疾病的治疗。光的有效医疗利用取决于模拟其在高散射组织中的传播。蒙特卡罗模拟光子迁移已被采用为“黄金标准”,因为它能够捕获复杂的几何形状和模拟所有相关的物理问题。这种准确性和通用性需要很高的计算成本,这限制了该技术的实用性。大大推广以前的工作,我们提出了第一个也是唯一的硬件加速蒙特卡罗生物光子模拟器,可以接受由四面体网格描述的复杂几何形状。在Altera Stratix V FPGA上实现,与严格优化的多线程CPU实现相比,它实现了高性能(4倍)和极高的能效(67倍),并证明了将性能提升进一步扩展到15-20倍的潜力,这将使重要的临床和研究应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast, Power-Efficient Biophotonic Simulations for Cancer Treatment Using FPGAs
Biophotonics, the study of light propagation through living tissue, is important for many medical applications ranging from imaging and detection through therapy for conditions such as cancer. Effective medical use of light depends on simulating its propagation through highly-scattering tissue. Monte Carlo simulation of photon migration has been adopted as the “gold standard” for its ability to capture complicated geometries and model all of the relevant problem physics. This accuracy and generality comes at a high computational cost, which limits the technique's utility. Greatly generalizing previous work, we present the first and only hardware-accelerated Monte Carlo biophotonic simulator that can accept complicated geometries described by tetrahedral meshes. Implemented on an Altera Stratix V FPGA, it achieves high performance (4x) and extremely high energy efficiency (67x) compared to a tightly-optimized multi-threaded CPU implementation, with demonstrated potential to expand the performance gains even further to 15-20x, which would enable important clinical and research applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信