基于词嵌入的聚类方法的比较研究

N. Bastas, George Kalpakis, T. Tsikrika, S. Vrochidis, Y. Kompatsiaris
{"title":"基于词嵌入的聚类方法的比较研究","authors":"N. Bastas, George Kalpakis, T. Tsikrika, S. Vrochidis, Y. Kompatsiaris","doi":"10.1109/EISIC49498.2019.9108898","DOIUrl":null,"url":null,"abstract":"Grouping large amounts of data is critical for various tasks, including the identification of content on a specific topic of interest (such as terrorism-related content) within a collection of material gathered from online sources. Various existing approaches typically extract relevant features using topic distributions and/or embedding methods, and subsequently apply clustering techniques in the derived representation space. In this work, we present a comparative study using Latent Dirichlet Allocation (LDA), Paragraph-Vector Distributed Bag-of-Words (PV-DBOW), and Paragraph-Vector Distributed Memory (PV-DM) models as representation methods, in conjunction with five traditional clustering algorithms, namely k-means, spherical k-means, possibilistic fuzzy c-means, agglomerative clustering and NMF, on two publicly available and one proprietary datasets. Fifteen combinations are formed which are assessed using external clustering validity measures, such as Adjusted Mutual Information (AMI) and Adjusted Rand Index (ARI) against available ground-truth. Our results indicate that using PV-DBOW leads in general to better clustering performance in all datasets.","PeriodicalId":117256,"journal":{"name":"2019 European Intelligence and Security Informatics Conference (EISIC)","volume":"12 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparative study of clustering methods using word embeddings\",\"authors\":\"N. Bastas, George Kalpakis, T. Tsikrika, S. Vrochidis, Y. Kompatsiaris\",\"doi\":\"10.1109/EISIC49498.2019.9108898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grouping large amounts of data is critical for various tasks, including the identification of content on a specific topic of interest (such as terrorism-related content) within a collection of material gathered from online sources. Various existing approaches typically extract relevant features using topic distributions and/or embedding methods, and subsequently apply clustering techniques in the derived representation space. In this work, we present a comparative study using Latent Dirichlet Allocation (LDA), Paragraph-Vector Distributed Bag-of-Words (PV-DBOW), and Paragraph-Vector Distributed Memory (PV-DM) models as representation methods, in conjunction with five traditional clustering algorithms, namely k-means, spherical k-means, possibilistic fuzzy c-means, agglomerative clustering and NMF, on two publicly available and one proprietary datasets. Fifteen combinations are formed which are assessed using external clustering validity measures, such as Adjusted Mutual Information (AMI) and Adjusted Rand Index (ARI) against available ground-truth. Our results indicate that using PV-DBOW leads in general to better clustering performance in all datasets.\",\"PeriodicalId\":117256,\"journal\":{\"name\":\"2019 European Intelligence and Security Informatics Conference (EISIC)\",\"volume\":\"12 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Intelligence and Security Informatics Conference (EISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EISIC49498.2019.9108898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC49498.2019.9108898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对大量数据进行分组对于各种任务至关重要,包括在从在线资源收集的材料集合中识别特定感兴趣主题的内容(例如与恐怖主义相关的内容)。现有的各种方法通常使用主题分布和/或嵌入方法提取相关特征,然后在派生的表示空间中应用聚类技术。在这项工作中,我们提出了一项比较研究,使用潜在狄利克雷分配(LDA)、段落向量分布式词袋(PV-DBOW)和段落向量分布式记忆(PV-DM)模型作为表示方法,结合五种传统聚类算法,即k-means、球形k-means、可能性模糊c-means、凝聚聚类和NMF,在两个公开可用和一个专有数据集上。形成了15种组合,使用外部聚类有效性度量进行评估,例如根据可用的基础真值调整互信息(AMI)和调整兰德指数(ARI)。我们的结果表明,使用PV-DBOW通常会在所有数据集中获得更好的聚类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of clustering methods using word embeddings
Grouping large amounts of data is critical for various tasks, including the identification of content on a specific topic of interest (such as terrorism-related content) within a collection of material gathered from online sources. Various existing approaches typically extract relevant features using topic distributions and/or embedding methods, and subsequently apply clustering techniques in the derived representation space. In this work, we present a comparative study using Latent Dirichlet Allocation (LDA), Paragraph-Vector Distributed Bag-of-Words (PV-DBOW), and Paragraph-Vector Distributed Memory (PV-DM) models as representation methods, in conjunction with five traditional clustering algorithms, namely k-means, spherical k-means, possibilistic fuzzy c-means, agglomerative clustering and NMF, on two publicly available and one proprietary datasets. Fifteen combinations are formed which are assessed using external clustering validity measures, such as Adjusted Mutual Information (AMI) and Adjusted Rand Index (ARI) against available ground-truth. Our results indicate that using PV-DBOW leads in general to better clustering performance in all datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信