{"title":"三种片上网络(NoC)架构的性能评估(特邀)","authors":"Jing Chen, P. Gillard, Cheng Li","doi":"10.1109/ICCChina.2012.6356997","DOIUrl":null,"url":null,"abstract":"As the number of processing elements which can be placed on a single chip doubles about every two years, both System-on-Chip (SoC) and the microprocessor market call for high-performance, flexible, scalable, and design-friendly interconnection network architectures [1]. Network-on-Chip (NoC) has been proposed as a solution to multi-core communication problems. The advantages of NoC include high bandwidth, low latency, low power consumption and scalability. The interconnection architecture has a significant impact on the performance of networks in terms of point-to-point delay, throughput, and loss rate. We evaluate the performance of three NoC architectures, including the torus, the Metacube and the hypercube under Poisson and bit-complement traffic pattern. Network sizes of 32, 64, 128, 512 and 1024 nodes are considered. Three injection rates ranging from 10% to 30% are applied to the target networks. Performance evaluation reflects that the torus is a viable choice for small networks (32-64 nodes) and the Metacube exhibits similar performance to the hypercube for 128 nodes and 512 nodes networks under a moderate load. Lower link complexity and fewer long wires make the Metacube a cheaper alternative to the hypercube.","PeriodicalId":154082,"journal":{"name":"2012 1st IEEE International Conference on Communications in China (ICCC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Performance evaluation of three Network-on-Chip (NoC) architectures (Invited)\",\"authors\":\"Jing Chen, P. Gillard, Cheng Li\",\"doi\":\"10.1109/ICCChina.2012.6356997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the number of processing elements which can be placed on a single chip doubles about every two years, both System-on-Chip (SoC) and the microprocessor market call for high-performance, flexible, scalable, and design-friendly interconnection network architectures [1]. Network-on-Chip (NoC) has been proposed as a solution to multi-core communication problems. The advantages of NoC include high bandwidth, low latency, low power consumption and scalability. The interconnection architecture has a significant impact on the performance of networks in terms of point-to-point delay, throughput, and loss rate. We evaluate the performance of three NoC architectures, including the torus, the Metacube and the hypercube under Poisson and bit-complement traffic pattern. Network sizes of 32, 64, 128, 512 and 1024 nodes are considered. Three injection rates ranging from 10% to 30% are applied to the target networks. Performance evaluation reflects that the torus is a viable choice for small networks (32-64 nodes) and the Metacube exhibits similar performance to the hypercube for 128 nodes and 512 nodes networks under a moderate load. Lower link complexity and fewer long wires make the Metacube a cheaper alternative to the hypercube.\",\"PeriodicalId\":154082,\"journal\":{\"name\":\"2012 1st IEEE International Conference on Communications in China (ICCC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 1st IEEE International Conference on Communications in China (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCChina.2012.6356997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st IEEE International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCChina.2012.6356997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance evaluation of three Network-on-Chip (NoC) architectures (Invited)
As the number of processing elements which can be placed on a single chip doubles about every two years, both System-on-Chip (SoC) and the microprocessor market call for high-performance, flexible, scalable, and design-friendly interconnection network architectures [1]. Network-on-Chip (NoC) has been proposed as a solution to multi-core communication problems. The advantages of NoC include high bandwidth, low latency, low power consumption and scalability. The interconnection architecture has a significant impact on the performance of networks in terms of point-to-point delay, throughput, and loss rate. We evaluate the performance of three NoC architectures, including the torus, the Metacube and the hypercube under Poisson and bit-complement traffic pattern. Network sizes of 32, 64, 128, 512 and 1024 nodes are considered. Three injection rates ranging from 10% to 30% are applied to the target networks. Performance evaluation reflects that the torus is a viable choice for small networks (32-64 nodes) and the Metacube exhibits similar performance to the hypercube for 128 nodes and 512 nodes networks under a moderate load. Lower link complexity and fewer long wires make the Metacube a cheaper alternative to the hypercube.