利用机器学习改进公用电缆诊断和预测

Shishir Shekhar, Shashwat Shekhar
{"title":"利用机器学习改进公用电缆诊断和预测","authors":"Shishir Shekhar, Shashwat Shekhar","doi":"10.1109/GridEdge54130.2023.10102722","DOIUrl":null,"url":null,"abstract":"Each year, millions of people and thousands of businesses are impacted by underground cable system failures. Underground cables are considered critical equipment within any power system, and typically one of the most expensive components of the system to repair. When they fail, the customer impact is immense and has the potential to cause severe collateral damage or worse, public safety concerns. Replacing underground power cables can be very expensive and time consuming and can take months or even years when associated with significant design, civil and construction work. Over 99% of solid dielectric (i.e.: XLPE or EPR) cable system failures are associated to Partial Discharge (PD). This paper characterizes the waveforms of Partial Discharge (PD) time domain signals utilizing a unique dataset of measured conditions of underground power cable systems. Machine Learning and Deep Learning models have been developed and evaluated for the purposes of providing the foundation for automated condition monitoring and predictive maintenance. The results demonstrate a step towards a predictive maintenance approach for underground cable systems.","PeriodicalId":377998,"journal":{"name":"2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Utility Cables Diagnostics and Prognostics using Machine Learning\",\"authors\":\"Shishir Shekhar, Shashwat Shekhar\",\"doi\":\"10.1109/GridEdge54130.2023.10102722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Each year, millions of people and thousands of businesses are impacted by underground cable system failures. Underground cables are considered critical equipment within any power system, and typically one of the most expensive components of the system to repair. When they fail, the customer impact is immense and has the potential to cause severe collateral damage or worse, public safety concerns. Replacing underground power cables can be very expensive and time consuming and can take months or even years when associated with significant design, civil and construction work. Over 99% of solid dielectric (i.e.: XLPE or EPR) cable system failures are associated to Partial Discharge (PD). This paper characterizes the waveforms of Partial Discharge (PD) time domain signals utilizing a unique dataset of measured conditions of underground power cable systems. Machine Learning and Deep Learning models have been developed and evaluated for the purposes of providing the foundation for automated condition monitoring and predictive maintenance. The results demonstrate a step towards a predictive maintenance approach for underground cable systems.\",\"PeriodicalId\":377998,\"journal\":{\"name\":\"2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GridEdge54130.2023.10102722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GridEdge54130.2023.10102722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

每年,数百万人和数千家企业受到地下电缆系统故障的影响。地下电缆被认为是任何电力系统中的关键设备,通常也是系统中维修成本最高的部件之一。当它们失败时,对客户的影响是巨大的,并有可能造成严重的附带损害,甚至更糟,引起公共安全问题。更换地下电缆可能非常昂贵和耗时,如果涉及重大的设计、土木和施工工作,可能需要数月甚至数年的时间。超过99%的固体介质(即:XLPE或EPR)电缆系统故障与局部放电(PD)有关。本文利用一个独特的地下电力电缆系统测量条件数据集来表征局部放电(PD)时域信号的波形。机器学习和深度学习模型已经被开发和评估,目的是为自动状态监测和预测性维护提供基础。研究结果表明,对地下电缆系统的预测性维护方法迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Utility Cables Diagnostics and Prognostics using Machine Learning
Each year, millions of people and thousands of businesses are impacted by underground cable system failures. Underground cables are considered critical equipment within any power system, and typically one of the most expensive components of the system to repair. When they fail, the customer impact is immense and has the potential to cause severe collateral damage or worse, public safety concerns. Replacing underground power cables can be very expensive and time consuming and can take months or even years when associated with significant design, civil and construction work. Over 99% of solid dielectric (i.e.: XLPE or EPR) cable system failures are associated to Partial Discharge (PD). This paper characterizes the waveforms of Partial Discharge (PD) time domain signals utilizing a unique dataset of measured conditions of underground power cable systems. Machine Learning and Deep Learning models have been developed and evaluated for the purposes of providing the foundation for automated condition monitoring and predictive maintenance. The results demonstrate a step towards a predictive maintenance approach for underground cable systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信