用伴随Pde方法快速求解马尔可夫泛函模型

Nick Denson, M. Joshi
{"title":"用伴随Pde方法快速求解马尔可夫泛函模型","authors":"Nick Denson, M. Joshi","doi":"10.2139/ssrn.1618026","DOIUrl":null,"url":null,"abstract":"This paper demonstrates how the adjoint PDE method can be used to compute Greeks in Markov-functional models. This is an accurate and efficient way to compute Greeks, where most of the model sensitivities can be computed in approximately the same time as a single sensitivity using finite difference. We demonstrate the speed and accuracy of the method using a Markov-functional interest rate model, also demonstrating how the model Greeks can be converted into market Greeks.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fast Greeks for Markov-Functional Models Using Adjoint Pde Methods\",\"authors\":\"Nick Denson, M. Joshi\",\"doi\":\"10.2139/ssrn.1618026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates how the adjoint PDE method can be used to compute Greeks in Markov-functional models. This is an accurate and efficient way to compute Greeks, where most of the model sensitivities can be computed in approximately the same time as a single sensitivity using finite difference. We demonstrate the speed and accuracy of the method using a Markov-functional interest rate model, also demonstrating how the model Greeks can be converted into market Greeks.\",\"PeriodicalId\":273058,\"journal\":{\"name\":\"ERN: Model Construction & Estimation (Topic)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Estimation (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1618026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1618026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文论证了伴随偏微分方程方法如何用于马尔可夫泛函模型中的希腊元计算。这是一种精确而有效的计算希腊的方法,其中大多数模型灵敏度可以在使用有限差分的近似相同时间内计算出单个灵敏度。我们使用马尔可夫函数利率模型演示了该方法的速度和准确性,也演示了如何将模型希腊转换为市场希腊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Greeks for Markov-Functional Models Using Adjoint Pde Methods
This paper demonstrates how the adjoint PDE method can be used to compute Greeks in Markov-functional models. This is an accurate and efficient way to compute Greeks, where most of the model sensitivities can be computed in approximately the same time as a single sensitivity using finite difference. We demonstrate the speed and accuracy of the method using a Markov-functional interest rate model, also demonstrating how the model Greeks can be converted into market Greeks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信