凸盖的形成是圆顶曲面的名称和一种新的曲面设计方法

A. Baidabekov, E. Kemelbekova, B. Yermekbayev
{"title":"凸盖的形成是圆顶曲面的名称和一种新的曲面设计方法","authors":"A. Baidabekov, E. Kemelbekova, B. Yermekbayev","doi":"10.32523/2616-7263-2023-143-2-26-35","DOIUrl":null,"url":null,"abstract":"In the article we examined the origin of the name of the dome and its connection with the sunny surface of a yurt. The new design of the dome surface is also shown. In this study, using a graphical model of the biquadrate transformation, each point of the transformed line, i.e. n of the prototype, is transformed into points forming a cross-section of the dome surface, while the transformed line gives a cross-section of the surface of the Sun. Then we rotate this section of the found dome surface relative to the vertical section Oх2and get the desired dome surface. When designing a removable dome surface, the format and dimensions of the section are set in accordance with the preliminary requirements. Thus, the biquadrate transformation method that we propose when designing a section of a domed surface, that is, a project of a domed curved surface, is practical and simple for designers. The proposed method in its simplicity is designed to solve various similar curved surfaces and engineering problems.","PeriodicalId":168248,"journal":{"name":"BULLETIN of L.N. Gumilyov Eurasian National University. Technical Science and Technology Series","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex cover – formation of the name of the domed surface and a new wayof designing the surface\",\"authors\":\"A. Baidabekov, E. Kemelbekova, B. Yermekbayev\",\"doi\":\"10.32523/2616-7263-2023-143-2-26-35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the article we examined the origin of the name of the dome and its connection with the sunny surface of a yurt. The new design of the dome surface is also shown. In this study, using a graphical model of the biquadrate transformation, each point of the transformed line, i.e. n of the prototype, is transformed into points forming a cross-section of the dome surface, while the transformed line gives a cross-section of the surface of the Sun. Then we rotate this section of the found dome surface relative to the vertical section Oх2and get the desired dome surface. When designing a removable dome surface, the format and dimensions of the section are set in accordance with the preliminary requirements. Thus, the biquadrate transformation method that we propose when designing a section of a domed surface, that is, a project of a domed curved surface, is practical and simple for designers. The proposed method in its simplicity is designed to solve various similar curved surfaces and engineering problems.\",\"PeriodicalId\":168248,\"journal\":{\"name\":\"BULLETIN of L.N. Gumilyov Eurasian National University. Technical Science and Technology Series\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BULLETIN of L.N. Gumilyov Eurasian National University. Technical Science and Technology Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2616-7263-2023-143-2-26-35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN of L.N. Gumilyov Eurasian National University. Technical Science and Technology Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2616-7263-2023-143-2-26-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在文章中,我们研究了圆顶的名字的起源,以及它与蒙古包的阳光表面的联系。文中还介绍了圆顶表面的新设计。在本研究中,采用双曲面变换的图形模型,将变换后的直线上的每个点,即原型的n点,变换后的直线给出太阳表面的截面。然后我们旋转找到的圆顶表面的这一部分相对于垂直部分Oх2and得到所需的圆顶表面。设计可移动圆顶面时,截面的格式和尺寸按初步要求设定。因此,我们在设计一个圆顶曲面的截面,即一个圆顶曲面的方案时提出的双曲面变换方法,对于设计师来说是实用和简单的。该方法简单,可用于求解各种相似曲面和工程问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex cover – formation of the name of the domed surface and a new wayof designing the surface
In the article we examined the origin of the name of the dome and its connection with the sunny surface of a yurt. The new design of the dome surface is also shown. In this study, using a graphical model of the biquadrate transformation, each point of the transformed line, i.e. n of the prototype, is transformed into points forming a cross-section of the dome surface, while the transformed line gives a cross-section of the surface of the Sun. Then we rotate this section of the found dome surface relative to the vertical section Oх2and get the desired dome surface. When designing a removable dome surface, the format and dimensions of the section are set in accordance with the preliminary requirements. Thus, the biquadrate transformation method that we propose when designing a section of a domed surface, that is, a project of a domed curved surface, is practical and simple for designers. The proposed method in its simplicity is designed to solve various similar curved surfaces and engineering problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信