一种有效的纹理图像分形维数计算方法

B. Chaudhuri, Nirupam Sarkar
{"title":"一种有效的纹理图像分形维数计算方法","authors":"B. Chaudhuri, Nirupam Sarkar","doi":"10.1109/ICPR.1992.201575","DOIUrl":null,"url":null,"abstract":"Fractal dimension is a feature used to characterize roughness and self-similarity in a picture. This feature is used in texture segmentation and classification, shape analysis and other problems. An efficient differential box-counting approach to fractal dimension estimation is proposed and compared with four other methods.<<ETX>>","PeriodicalId":410961,"journal":{"name":"[1992] Proceedings. 11th IAPR International Conference on Pattern Recognition","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"An efficient approach to compute fractal dimension in texture image\",\"authors\":\"B. Chaudhuri, Nirupam Sarkar\",\"doi\":\"10.1109/ICPR.1992.201575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractal dimension is a feature used to characterize roughness and self-similarity in a picture. This feature is used in texture segmentation and classification, shape analysis and other problems. An efficient differential box-counting approach to fractal dimension estimation is proposed and compared with four other methods.<<ETX>>\",\"PeriodicalId\":410961,\"journal\":{\"name\":\"[1992] Proceedings. 11th IAPR International Conference on Pattern Recognition\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings. 11th IAPR International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings. 11th IAPR International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

分形维数是用来描述图像的粗糙度和自相似性的特征。该特征用于纹理分割分类、形状分析等问题。提出了一种有效的分形维数估计的微分盒计数方法,并对其他四种方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient approach to compute fractal dimension in texture image
Fractal dimension is a feature used to characterize roughness and self-similarity in a picture. This feature is used in texture segmentation and classification, shape analysis and other problems. An efficient differential box-counting approach to fractal dimension estimation is proposed and compared with four other methods.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信