一种挖掘OWA运营商DM策略的统计方法

Resmiye Nasiboglu, Baris Tekin Tezel
{"title":"一种挖掘OWA运营商DM策略的统计方法","authors":"Resmiye Nasiboglu, Baris Tekin Tezel","doi":"10.1109/ICAICT.2016.7991675","DOIUrl":null,"url":null,"abstract":"The most important thing in using the ordered weighted averaging (OWA) operator which can easily describe the mental model of an Decision Maker (DM), is to characterize OWA weights. Determination of OWA weights cannot provide a characterization by itself. If we want to generalization and reusability of the OWA weights to aggregate various sized objects, we have to be determine more general form. In this paper, we propose a new approach for learning a stress function, which can be characterized as a DM strategy of OWA operator. For this aim the Kolmogorov-Smirnov test for similarity probability density functions is used.","PeriodicalId":446472,"journal":{"name":"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)","volume":"456 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A statistical approach to mining the DM strategy for OWA operators\",\"authors\":\"Resmiye Nasiboglu, Baris Tekin Tezel\",\"doi\":\"10.1109/ICAICT.2016.7991675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most important thing in using the ordered weighted averaging (OWA) operator which can easily describe the mental model of an Decision Maker (DM), is to characterize OWA weights. Determination of OWA weights cannot provide a characterization by itself. If we want to generalization and reusability of the OWA weights to aggregate various sized objects, we have to be determine more general form. In this paper, we propose a new approach for learning a stress function, which can be characterized as a DM strategy of OWA operator. For this aim the Kolmogorov-Smirnov test for similarity probability density functions is used.\",\"PeriodicalId\":446472,\"journal\":{\"name\":\"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"456 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICT.2016.7991675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICT.2016.7991675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有序加权平均(OWA)算子可以很容易地描述决策者的心理模型,在使用OWA算子时,最重要的是表征OWA的权重。OWA权重的确定本身不能提供表征。如果我们想要泛化和重用OWA权重来聚合各种大小的对象,我们必须确定更通用的形式。本文提出了一种新的应力函数学习方法,可将其描述为OWA算子的DM策略。为此目的,使用相似性概率密度函数的Kolmogorov-Smirnov检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A statistical approach to mining the DM strategy for OWA operators
The most important thing in using the ordered weighted averaging (OWA) operator which can easily describe the mental model of an Decision Maker (DM), is to characterize OWA weights. Determination of OWA weights cannot provide a characterization by itself. If we want to generalization and reusability of the OWA weights to aggregate various sized objects, we have to be determine more general form. In this paper, we propose a new approach for learning a stress function, which can be characterized as a DM strategy of OWA operator. For this aim the Kolmogorov-Smirnov test for similarity probability density functions is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信