基于窗口经验模态分解的纹理分割

Lingfei Liang, J. Pu, Ziliang Ping
{"title":"基于窗口经验模态分解的纹理分割","authors":"Lingfei Liang, J. Pu, Ziliang Ping","doi":"10.1109/ICAL.2012.6308238","DOIUrl":null,"url":null,"abstract":"In this paper window empirical mode decomposition (WEMD) is proposed and is used to do texture segmentation. Empirical mode decomposition (EMD) can decompose the nonstationary and nonlinear signals by sifting into a few intrinsic mode functions (IMFs) which represent a simple oscillatory mode of local data. However, the traditional bidimensional EMD (BEMD) has two drawbacks of the gray spots in IMF image and the slow computation speed. WEMD can solve such problems. Based on the characteristic of WEMD and local time/space-frequency analysis of structure multivector, the renovate technique of texture segmentation is also presented. Characterized by the local amplitude and the local frequency of every IMF component, the texture image can be segmented by k-means clustering algorithm. The subsequent experimental results indicate this method's effectiveness.","PeriodicalId":373152,"journal":{"name":"2012 IEEE International Conference on Automation and Logistics","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Texture segmentation using window empirical mode decomposition\",\"authors\":\"Lingfei Liang, J. Pu, Ziliang Ping\",\"doi\":\"10.1109/ICAL.2012.6308238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper window empirical mode decomposition (WEMD) is proposed and is used to do texture segmentation. Empirical mode decomposition (EMD) can decompose the nonstationary and nonlinear signals by sifting into a few intrinsic mode functions (IMFs) which represent a simple oscillatory mode of local data. However, the traditional bidimensional EMD (BEMD) has two drawbacks of the gray spots in IMF image and the slow computation speed. WEMD can solve such problems. Based on the characteristic of WEMD and local time/space-frequency analysis of structure multivector, the renovate technique of texture segmentation is also presented. Characterized by the local amplitude and the local frequency of every IMF component, the texture image can be segmented by k-means clustering algorithm. The subsequent experimental results indicate this method's effectiveness.\",\"PeriodicalId\":373152,\"journal\":{\"name\":\"2012 IEEE International Conference on Automation and Logistics\",\"volume\":\"303 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Automation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAL.2012.6308238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2012.6308238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于窗口经验模态分解(WEMD)的纹理分割方法。经验模态分解(EMD)通过将非平稳和非线性信号筛选成代表局部数据的简单振荡模态的几个本征模态函数(imf)来分解。然而,传统的二维EMD (BEMD)存在IMF图像中存在灰色斑点和计算速度慢的缺点。WEMD可以解决这些问题。基于WEMD的特性和结构多向量的局部时/空-频分析,提出了纹理分割的更新技术。利用每个IMF分量的局部振幅和局部频率特征,采用k-means聚类算法对纹理图像进行分割。随后的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Texture segmentation using window empirical mode decomposition
In this paper window empirical mode decomposition (WEMD) is proposed and is used to do texture segmentation. Empirical mode decomposition (EMD) can decompose the nonstationary and nonlinear signals by sifting into a few intrinsic mode functions (IMFs) which represent a simple oscillatory mode of local data. However, the traditional bidimensional EMD (BEMD) has two drawbacks of the gray spots in IMF image and the slow computation speed. WEMD can solve such problems. Based on the characteristic of WEMD and local time/space-frequency analysis of structure multivector, the renovate technique of texture segmentation is also presented. Characterized by the local amplitude and the local frequency of every IMF component, the texture image can be segmented by k-means clustering algorithm. The subsequent experimental results indicate this method's effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信