一种新的社交网络社区检测与影响力排序算法

Wenjun Wang, W. Street
{"title":"一种新的社交网络社区检测与影响力排序算法","authors":"Wenjun Wang, W. Street","doi":"10.1109/ASONAM.2014.6921641","DOIUrl":null,"url":null,"abstract":"Community detection and influence analysis are significant notions in social networks. We exploit the implicit knowledge of influence-based connectivity and proximity encoded in the network topology, and propose a novel algorithm for both community detection and influence ranking. Using a new influence cascade model, the algorithm generates an influence vector for each node, which captures in detail how the node's influence is distributed through the network. Similarity in this influence space defines a new, meaningful and refined connectivity measure for the closeness of any pair of nodes. Our approach not only differentiates the influence ranking but also effectively finds communities in both undirected and directed networks, and incorporates these two important tasks into one integrated framework. We demonstrate its superior performance with extensive tests on a set of real-world networks and synthetic benchmarks.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A novel algorithm for community detection and influence ranking in social networks\",\"authors\":\"Wenjun Wang, W. Street\",\"doi\":\"10.1109/ASONAM.2014.6921641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community detection and influence analysis are significant notions in social networks. We exploit the implicit knowledge of influence-based connectivity and proximity encoded in the network topology, and propose a novel algorithm for both community detection and influence ranking. Using a new influence cascade model, the algorithm generates an influence vector for each node, which captures in detail how the node's influence is distributed through the network. Similarity in this influence space defines a new, meaningful and refined connectivity measure for the closeness of any pair of nodes. Our approach not only differentiates the influence ranking but also effectively finds communities in both undirected and directed networks, and incorporates these two important tasks into one integrated framework. We demonstrate its superior performance with extensive tests on a set of real-world networks and synthetic benchmarks.\",\"PeriodicalId\":143584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM.2014.6921641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

社区检测和影响分析是社交网络中的重要概念。我们利用网络拓扑中基于影响的连通性和接近性的隐式知识,提出了一种社区检测和影响排序的新算法。该算法采用一种新的影响级联模型,为每个节点生成一个影响向量,该向量详细捕获了节点的影响如何在网络中分布。该影响空间中的相似性定义了一种新的、有意义的、精细的连接度量,用于任何对节点的亲密性。我们的方法不仅区分了影响力排名,而且有效地在无向和有向网络中找到社区,并将这两项重要任务整合到一个集成框架中。我们在一组真实世界的网络和合成基准上进行了广泛的测试,证明了它的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel algorithm for community detection and influence ranking in social networks
Community detection and influence analysis are significant notions in social networks. We exploit the implicit knowledge of influence-based connectivity and proximity encoded in the network topology, and propose a novel algorithm for both community detection and influence ranking. Using a new influence cascade model, the algorithm generates an influence vector for each node, which captures in detail how the node's influence is distributed through the network. Similarity in this influence space defines a new, meaningful and refined connectivity measure for the closeness of any pair of nodes. Our approach not only differentiates the influence ranking but also effectively finds communities in both undirected and directed networks, and incorporates these two important tasks into one integrated framework. We demonstrate its superior performance with extensive tests on a set of real-world networks and synthetic benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信