基于低成本fpga的二值化神经网络早期退出策略评估

Minxuan Kong, Kris Nikov, J. Núñez-Yáñez
{"title":"基于低成本fpga的二值化神经网络早期退出策略评估","authors":"Minxuan Kong, Kris Nikov, J. Núñez-Yáñez","doi":"10.1109/DSD57027.2022.00035","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the application of early-exit strategies to quantized neural networks with binarized weights, mapped to low-cost FPGA SoC devices. The increasing complexity of network models means that hardware reuse and heterogeneous execution are needed and this opens the opportunity to evaluate the prediction confidence level early on. We apply the early-exit strategy to a network model suitable for ImageNet classification that combines weights with floating-point and binary arithmetic precision. The experiments show an improvement in inferred speed of around 20% using an early-exit network, compared with using a single primary neural network, with a negligible accuracy drop of 1.56%.","PeriodicalId":211723,"journal":{"name":"2022 25th Euromicro Conference on Digital System Design (DSD)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Early-exit Strategies in Low-cost FPGA-based Binarized Neural Networks\",\"authors\":\"Minxuan Kong, Kris Nikov, J. Núñez-Yáñez\",\"doi\":\"10.1109/DSD57027.2022.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the application of early-exit strategies to quantized neural networks with binarized weights, mapped to low-cost FPGA SoC devices. The increasing complexity of network models means that hardware reuse and heterogeneous execution are needed and this opens the opportunity to evaluate the prediction confidence level early on. We apply the early-exit strategy to a network model suitable for ImageNet classification that combines weights with floating-point and binary arithmetic precision. The experiments show an improvement in inferred speed of around 20% using an early-exit network, compared with using a single primary neural network, with a negligible accuracy drop of 1.56%.\",\"PeriodicalId\":211723,\"journal\":{\"name\":\"2022 25th Euromicro Conference on Digital System Design (DSD)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th Euromicro Conference on Digital System Design (DSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD57027.2022.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD57027.2022.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了早期退出策略在具有二值化权重的量化神经网络中的应用,并将其映射到低成本的FPGA SoC器件上。网络模型的日益复杂意味着需要硬件重用和异构执行,这为早期评估预测置信水平提供了机会。我们将提前退出策略应用于一个适合ImageNet分类的网络模型,该模型结合了权重、浮点数和二进制算术精度。实验表明,与使用单个主神经网络相比,使用早期退出网络的推断速度提高了约20%,准确率下降了1.56%,可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Early-exit Strategies in Low-cost FPGA-based Binarized Neural Networks
In this paper, we investigate the application of early-exit strategies to quantized neural networks with binarized weights, mapped to low-cost FPGA SoC devices. The increasing complexity of network models means that hardware reuse and heterogeneous execution are needed and this opens the opportunity to evaluate the prediction confidence level early on. We apply the early-exit strategy to a network model suitable for ImageNet classification that combines weights with floating-point and binary arithmetic precision. The experiments show an improvement in inferred speed of around 20% using an early-exit network, compared with using a single primary neural network, with a negligible accuracy drop of 1.56%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信