将收集能量的叶子嫁接到传感器树上

Lohit Yerva, Bradford Campbell, Apoorva Bansal, T. Schmid, P. Dutta
{"title":"将收集能量的叶子嫁接到传感器树上","authors":"Lohit Yerva, Bradford Campbell, Apoorva Bansal, T. Schmid, P. Dutta","doi":"10.1145/2185677.2185733","DOIUrl":null,"url":null,"abstract":"We study the problem of augmenting battery-powered sensornet trees with energy-harvesting leaf nodes. Our results show that leaf nodes that are smaller in size than today's typical battery-powered sensors can harvest enough energy from ambient sources to acquire and transmit sensor readings every minute, even under poor lighting conditions. However, achieving this functionality, especially as leaf nodes scale in size, requires new platforms, protocols, and programming. Platforms must be designed around low-leakage operation, offer a richer power supply control interface for system software, and employ an unconventional energy storage hierarchy. Protocols must not only be low-power, but they must also become low-energy, which affects initial and ongoing synchronization, and periodic communications. Systems programming, and especially bootup and communications, must become low-latency, by eliminating conservative timeouts and startup dependencies, and embracing high-concurrency. Applying these principles, we show that robust, indoor, perpetual sensing is viable using off-the-shelf technology.","PeriodicalId":231003,"journal":{"name":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Grafting energy-harvesting leaves onto the sensornet tree\",\"authors\":\"Lohit Yerva, Bradford Campbell, Apoorva Bansal, T. Schmid, P. Dutta\",\"doi\":\"10.1145/2185677.2185733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of augmenting battery-powered sensornet trees with energy-harvesting leaf nodes. Our results show that leaf nodes that are smaller in size than today's typical battery-powered sensors can harvest enough energy from ambient sources to acquire and transmit sensor readings every minute, even under poor lighting conditions. However, achieving this functionality, especially as leaf nodes scale in size, requires new platforms, protocols, and programming. Platforms must be designed around low-leakage operation, offer a richer power supply control interface for system software, and employ an unconventional energy storage hierarchy. Protocols must not only be low-power, but they must also become low-energy, which affects initial and ongoing synchronization, and periodic communications. Systems programming, and especially bootup and communications, must become low-latency, by eliminating conservative timeouts and startup dependencies, and embracing high-concurrency. Applying these principles, we show that robust, indoor, perpetual sensing is viable using off-the-shelf technology.\",\"PeriodicalId\":231003,\"journal\":{\"name\":\"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2185677.2185733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185677.2185733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

我们研究了用能量收集叶节点增加电池供电的传感器树的问题。我们的研究结果表明,即使在光线不足的情况下,比当今典型的电池供电传感器尺寸更小的叶节点也可以从环境源中收集足够的能量,每分钟获取和传输传感器读数。然而,要实现这个功能,特别是当叶节点的规模扩大时,需要新的平台、协议和编程。平台必须围绕低泄漏运行进行设计,为系统软件提供更丰富的电源控制接口,并采用非常规的储能层次结构。协议不仅必须低功耗,而且还必须变得低功耗,这将影响初始和正在进行的同步以及周期性通信。系统编程,特别是启动和通信,必须通过消除保守的超时和启动依赖关系,并采用高并发性来实现低延迟。应用这些原理,我们证明了使用现成的技术,强大的、室内的、永久的传感是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grafting energy-harvesting leaves onto the sensornet tree
We study the problem of augmenting battery-powered sensornet trees with energy-harvesting leaf nodes. Our results show that leaf nodes that are smaller in size than today's typical battery-powered sensors can harvest enough energy from ambient sources to acquire and transmit sensor readings every minute, even under poor lighting conditions. However, achieving this functionality, especially as leaf nodes scale in size, requires new platforms, protocols, and programming. Platforms must be designed around low-leakage operation, offer a richer power supply control interface for system software, and employ an unconventional energy storage hierarchy. Protocols must not only be low-power, but they must also become low-energy, which affects initial and ongoing synchronization, and periodic communications. Systems programming, and especially bootup and communications, must become low-latency, by eliminating conservative timeouts and startup dependencies, and embracing high-concurrency. Applying these principles, we show that robust, indoor, perpetual sensing is viable using off-the-shelf technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信