频率选择信道的量化恒定包络预编码

H. Jedda, J. Nossek
{"title":"频率选择信道的量化恒定包络预编码","authors":"H. Jedda, J. Nossek","doi":"10.1109/SSP.2018.8450753","DOIUrl":null,"url":null,"abstract":"The combination of coarse quantization with Constant Envelope (CE) signaling at the transmitter is of paramount importance in massive Multiple-Input Multiple-Output (MIMO) systems due to its power efficiency. In this context, we present a nonlinear precoder design for single-carrier transmission with frequency-selective channels. The optimization problem is formulated for Quadrature Amplitude Modulation (QAM) signaling as a linear programming problem. Simulation results show significant gains compared to the linear precoders.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Quantized Constant Envelope Precoding for Frequency Selective Channels\",\"authors\":\"H. Jedda, J. Nossek\",\"doi\":\"10.1109/SSP.2018.8450753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of coarse quantization with Constant Envelope (CE) signaling at the transmitter is of paramount importance in massive Multiple-Input Multiple-Output (MIMO) systems due to its power efficiency. In this context, we present a nonlinear precoder design for single-carrier transmission with frequency-selective channels. The optimization problem is formulated for Quadrature Amplitude Modulation (QAM) signaling as a linear programming problem. Simulation results show significant gains compared to the linear precoders.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在大规模多输入多输出(MIMO)系统中,将粗量化与发射端恒定包络(CE)信号相结合具有重要的功率效率。在这种情况下,我们提出了一种非线性预编码器设计,用于具有频率选择信道的单载波传输。正交调幅(QAM)信号的优化问题是一个线性规划问题。仿真结果表明,与线性预编码器相比,增益显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantized Constant Envelope Precoding for Frequency Selective Channels
The combination of coarse quantization with Constant Envelope (CE) signaling at the transmitter is of paramount importance in massive Multiple-Input Multiple-Output (MIMO) systems due to its power efficiency. In this context, we present a nonlinear precoder design for single-carrier transmission with frequency-selective channels. The optimization problem is formulated for Quadrature Amplitude Modulation (QAM) signaling as a linear programming problem. Simulation results show significant gains compared to the linear precoders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信