智能手机用户活动识别与认证的机器学习模型

S. Ahmadi, S. Rashad, H. Elgazzar
{"title":"智能手机用户活动识别与认证的机器学习模型","authors":"S. Ahmadi, S. Rashad, H. Elgazzar","doi":"10.1109/UEMCON47517.2019.8993055","DOIUrl":null,"url":null,"abstract":"Technological advancements have made smartphones to provide wide range of applications that enable users to perform many of their tasks easily and conveniently, anytime and anywhere. For this reason, many users are tend to store their private data in their smart phones. Since conventional methods for security of smartphones, such as passwords, personal identification numbers, and pattern locks are prone to many attacks, this research paper proposes a novel method for authenticating smartphone users based on performing seven different daily physical activity as behavioral biometrics, using smartphone embedded sensor data. This authentication scheme builds a machine learning model which recognizes users by performing those daily activities. Experimental results demonstrate the effectiveness of the proposed framework.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine Learning Models for Activity Recognition and Authentication of Smartphone Users\",\"authors\":\"S. Ahmadi, S. Rashad, H. Elgazzar\",\"doi\":\"10.1109/UEMCON47517.2019.8993055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technological advancements have made smartphones to provide wide range of applications that enable users to perform many of their tasks easily and conveniently, anytime and anywhere. For this reason, many users are tend to store their private data in their smart phones. Since conventional methods for security of smartphones, such as passwords, personal identification numbers, and pattern locks are prone to many attacks, this research paper proposes a novel method for authenticating smartphone users based on performing seven different daily physical activity as behavioral biometrics, using smartphone embedded sensor data. This authentication scheme builds a machine learning model which recognizes users by performing those daily activities. Experimental results demonstrate the effectiveness of the proposed framework.\",\"PeriodicalId\":187022,\"journal\":{\"name\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON47517.2019.8993055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8993055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

技术进步使智能手机提供了广泛的应用程序,使用户能够随时随地轻松方便地执行许多任务。出于这个原因,许多用户倾向于将他们的私人数据存储在他们的智能手机中。由于智能手机的传统安全方法,如密码、个人识别号码和模式锁容易受到许多攻击,本研究论文提出了一种基于执行七种不同的日常身体活动作为行为生物识别的智能手机用户身份验证的新方法,使用智能手机嵌入式传感器数据。该认证方案构建了一个机器学习模型,该模型通过执行这些日常活动来识别用户。实验结果证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Models for Activity Recognition and Authentication of Smartphone Users
Technological advancements have made smartphones to provide wide range of applications that enable users to perform many of their tasks easily and conveniently, anytime and anywhere. For this reason, many users are tend to store their private data in their smart phones. Since conventional methods for security of smartphones, such as passwords, personal identification numbers, and pattern locks are prone to many attacks, this research paper proposes a novel method for authenticating smartphone users based on performing seven different daily physical activity as behavioral biometrics, using smartphone embedded sensor data. This authentication scheme builds a machine learning model which recognizes users by performing those daily activities. Experimental results demonstrate the effectiveness of the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信