任意正测度的高斯正交公式

A. Fernandes, W. Atchley
{"title":"任意正测度的高斯正交公式","authors":"A. Fernandes, W. Atchley","doi":"10.1177/117693430600200010","DOIUrl":null,"url":null,"abstract":"We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student's t, inverse-gamma, beta, and Fisher's F) we present exact formulae for computing the respective quadrature scheme. Availability: Source code is freely available online as a C-linkable ISO C++ library under a BSD-style license from http://www.fernandes.org/gaussqr. The library may be built using single, double, or extended precision arithmetic.","PeriodicalId":136690,"journal":{"name":"Evolutionary Bioinformatics Online","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Gaussian Quadrature Formulae for Arbitrary Positive Measures\",\"authors\":\"A. Fernandes, W. Atchley\",\"doi\":\"10.1177/117693430600200010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student's t, inverse-gamma, beta, and Fisher's F) we present exact formulae for computing the respective quadrature scheme. Availability: Source code is freely available online as a C-linkable ISO C++ library under a BSD-style license from http://www.fernandes.org/gaussqr. The library may be built using single, double, or extended precision arithmetic.\",\"PeriodicalId\":136690,\"journal\":{\"name\":\"Evolutionary Bioinformatics Online\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Bioinformatics Online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/117693430600200010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics Online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/117693430600200010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

给出了计算任意正测度高斯正交积分公式的计算方法和子程序。对于可以分解成众所周知形式的昂贵的积分,高斯积分方案允许对高精度和高精度数值积分进行有效的评估,特别是与一般的特设方案相比。此外,对于某些众所周知的密度度量(正态、伽马、对数正态、Student’s t、逆伽马、beta和Fisher’s F),我们给出了计算各自正交方案的精确公式。可用性:在bsd风格的许可下,源代码作为可C链接的ISO c++库可从http://www.fernandes.org/gaussqr免费在线获得。该库可以使用单精度、双精度或扩展精度算法构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Quadrature Formulae for Arbitrary Positive Measures
We present computational methods and subroutines to compute Gaussian quadrature integration formulas for arbitrary positive measures. For expensive integrands that can be factored into well-known forms, Gaussian quadrature schemes allow for efficient evaluation of high-accuracy and -precision numerical integrals, especially compared to general ad hoc schemes. In addition, for certain well-known density measures (the normal, gamma, log-normal, Student's t, inverse-gamma, beta, and Fisher's F) we present exact formulae for computing the respective quadrature scheme. Availability: Source code is freely available online as a C-linkable ISO C++ library under a BSD-style license from http://www.fernandes.org/gaussqr. The library may be built using single, double, or extended precision arithmetic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信