用预提升原型构造好的QC-LDPC代码

David G. M. Mitchell, R. Smarandache, D. Costello
{"title":"用预提升原型构造好的QC-LDPC代码","authors":"David G. M. Mitchell, R. Smarandache, D. Costello","doi":"10.1109/ITW.2012.6404658","DOIUrl":null,"url":null,"abstract":"Quasi-cyclic (QC) low-density parity-check (LDPC) codes are of great interest to code designers because of their implementation advantages and algebraic properties that facilitate their analysis. In this paper, we present some new results on QC-LDPC codes that are constructed using a two-step lifting procedure based on a protograph, and, by implementing this method instead of the usual one-step procedure, we are able to show improved minimum distance and girth properties. We also present two design rules to construct QC-LDPC codes: one uses only circulant permutation matrices at the first (pre-lifting) stage and the other uses a selection of non-commuting permutation matrices. For both techniques, we obtain a demonstrable increase in the minimum distance compared to a one-step circulant-based lifting. The expected performance improvement is verified by simulation results.","PeriodicalId":325771,"journal":{"name":"2012 IEEE Information Theory Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Constructing good QC-LDPC codes by pre-lifting protographs\",\"authors\":\"David G. M. Mitchell, R. Smarandache, D. Costello\",\"doi\":\"10.1109/ITW.2012.6404658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-cyclic (QC) low-density parity-check (LDPC) codes are of great interest to code designers because of their implementation advantages and algebraic properties that facilitate their analysis. In this paper, we present some new results on QC-LDPC codes that are constructed using a two-step lifting procedure based on a protograph, and, by implementing this method instead of the usual one-step procedure, we are able to show improved minimum distance and girth properties. We also present two design rules to construct QC-LDPC codes: one uses only circulant permutation matrices at the first (pre-lifting) stage and the other uses a selection of non-commuting permutation matrices. For both techniques, we obtain a demonstrable increase in the minimum distance compared to a one-step circulant-based lifting. The expected performance improvement is verified by simulation results.\",\"PeriodicalId\":325771,\"journal\":{\"name\":\"2012 IEEE Information Theory Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Information Theory Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2012.6404658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2012.6404658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

准循环(QC)低密度奇偶校验(LDPC)码由于其实现优势和便于分析的代数性质而引起了码设计者的极大兴趣。在本文中,我们给出了用基于原型的两步提升程序构造QC-LDPC码的一些新结果,并且,通过实现这种方法而不是通常的一步程序,我们能够显示出改进的最小距离和周长性质。我们还提出了构造QC-LDPC码的两个设计规则:一个在第一(提升前)阶段仅使用循环置换矩阵,另一个使用非交换置换矩阵的选择。对于这两种技术,与一步循环举升相比,我们获得了明显的最小距离增加。仿真结果验证了预期的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing good QC-LDPC codes by pre-lifting protographs
Quasi-cyclic (QC) low-density parity-check (LDPC) codes are of great interest to code designers because of their implementation advantages and algebraic properties that facilitate their analysis. In this paper, we present some new results on QC-LDPC codes that are constructed using a two-step lifting procedure based on a protograph, and, by implementing this method instead of the usual one-step procedure, we are able to show improved minimum distance and girth properties. We also present two design rules to construct QC-LDPC codes: one uses only circulant permutation matrices at the first (pre-lifting) stage and the other uses a selection of non-commuting permutation matrices. For both techniques, we obtain a demonstrable increase in the minimum distance compared to a one-step circulant-based lifting. The expected performance improvement is verified by simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信