连接学习方法在制造过程监控中的应用

J. Franklin, R. Sutton, C. Anderson
{"title":"连接学习方法在制造过程监控中的应用","authors":"J. Franklin, R. Sutton, C. Anderson","doi":"10.1109/ISIC.1988.65518","DOIUrl":null,"url":null,"abstract":"It is demonstrated that connectionist learning networks can monitor manufacturing processes to determine causal relationships with an accuracy competitive with that of conventional statistical techniques. Moreover, the network operates online, in realtime, and with substantial savings in computational complexity as compared with conventional CIM techniques. Two approaches are compared. One employs standard procedures to find correlations between sensor measurements and quality. The sensor data from the production line are collected over a period of time, and correlations are made offline at infrequent intervals using analyses such as linear regression. The second approach is to estimate the correlations incrementally, as the data are collected, online and in real-time. The estimates are updated incrementally using connectionist learning procedures. Simulation results are presented for a fluorescent bulb manufacturing line.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Application of connectionist learning methods to manufacturing process monitoring\",\"authors\":\"J. Franklin, R. Sutton, C. Anderson\",\"doi\":\"10.1109/ISIC.1988.65518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is demonstrated that connectionist learning networks can monitor manufacturing processes to determine causal relationships with an accuracy competitive with that of conventional statistical techniques. Moreover, the network operates online, in realtime, and with substantial savings in computational complexity as compared with conventional CIM techniques. Two approaches are compared. One employs standard procedures to find correlations between sensor measurements and quality. The sensor data from the production line are collected over a period of time, and correlations are made offline at infrequent intervals using analyses such as linear regression. The second approach is to estimate the correlations incrementally, as the data are collected, online and in real-time. The estimates are updated incrementally using connectionist learning procedures. Simulation results are presented for a fluorescent bulb manufacturing line.<<ETX>>\",\"PeriodicalId\":155616,\"journal\":{\"name\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1988.65518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

研究表明,连接主义学习网络可以监控制造过程,以确定因果关系,其准确性与传统统计技术相比具有竞争力。此外,该网络在线实时运行,与传统CIM技术相比,计算复杂性大大降低。比较了两种方法。一种是采用标准程序来发现传感器测量值与质量之间的相关性。在一段时间内收集来自生产线的传感器数据,并使用线性回归等分析以不频繁的间隔离线进行相关性分析。第二种方法是随着数据的在线和实时收集,逐步估计相关性。使用连接学习程序增量更新估计。给出了荧光灯泡生产线的仿真结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of connectionist learning methods to manufacturing process monitoring
It is demonstrated that connectionist learning networks can monitor manufacturing processes to determine causal relationships with an accuracy competitive with that of conventional statistical techniques. Moreover, the network operates online, in realtime, and with substantial savings in computational complexity as compared with conventional CIM techniques. Two approaches are compared. One employs standard procedures to find correlations between sensor measurements and quality. The sensor data from the production line are collected over a period of time, and correlations are made offline at infrequent intervals using analyses such as linear regression. The second approach is to estimate the correlations incrementally, as the data are collected, online and in real-time. The estimates are updated incrementally using connectionist learning procedures. Simulation results are presented for a fluorescent bulb manufacturing line.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信