{"title":"连接学习方法在制造过程监控中的应用","authors":"J. Franklin, R. Sutton, C. Anderson","doi":"10.1109/ISIC.1988.65518","DOIUrl":null,"url":null,"abstract":"It is demonstrated that connectionist learning networks can monitor manufacturing processes to determine causal relationships with an accuracy competitive with that of conventional statistical techniques. Moreover, the network operates online, in realtime, and with substantial savings in computational complexity as compared with conventional CIM techniques. Two approaches are compared. One employs standard procedures to find correlations between sensor measurements and quality. The sensor data from the production line are collected over a period of time, and correlations are made offline at infrequent intervals using analyses such as linear regression. The second approach is to estimate the correlations incrementally, as the data are collected, online and in real-time. The estimates are updated incrementally using connectionist learning procedures. Simulation results are presented for a fluorescent bulb manufacturing line.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Application of connectionist learning methods to manufacturing process monitoring\",\"authors\":\"J. Franklin, R. Sutton, C. Anderson\",\"doi\":\"10.1109/ISIC.1988.65518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is demonstrated that connectionist learning networks can monitor manufacturing processes to determine causal relationships with an accuracy competitive with that of conventional statistical techniques. Moreover, the network operates online, in realtime, and with substantial savings in computational complexity as compared with conventional CIM techniques. Two approaches are compared. One employs standard procedures to find correlations between sensor measurements and quality. The sensor data from the production line are collected over a period of time, and correlations are made offline at infrequent intervals using analyses such as linear regression. The second approach is to estimate the correlations incrementally, as the data are collected, online and in real-time. The estimates are updated incrementally using connectionist learning procedures. Simulation results are presented for a fluorescent bulb manufacturing line.<<ETX>>\",\"PeriodicalId\":155616,\"journal\":{\"name\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE International Symposium on Intelligent Control 1988\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1988.65518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of connectionist learning methods to manufacturing process monitoring
It is demonstrated that connectionist learning networks can monitor manufacturing processes to determine causal relationships with an accuracy competitive with that of conventional statistical techniques. Moreover, the network operates online, in realtime, and with substantial savings in computational complexity as compared with conventional CIM techniques. Two approaches are compared. One employs standard procedures to find correlations between sensor measurements and quality. The sensor data from the production line are collected over a period of time, and correlations are made offline at infrequent intervals using analyses such as linear regression. The second approach is to estimate the correlations incrementally, as the data are collected, online and in real-time. The estimates are updated incrementally using connectionist learning procedures. Simulation results are presented for a fluorescent bulb manufacturing line.<>