B. S. Munhão, Bianca de Almeida Dantas, Edson Norberto Cáceres, Henrique Mongelli
{"title":"GPGPU的优化算法实现对群里ı́culas多维背包问题","authors":"B. S. Munhão, Bianca de Almeida Dantas, Edson Norberto Cáceres, Henrique Mongelli","doi":"10.5753/wscad_estendido.2019.8703","DOIUrl":null,"url":null,"abstract":"Um dos problemas mais conhecidos de otimização combinatória, que possui diversas aplicações práticas, é o problema da mochila multidimensional (MKP). Apesar de sua popularidade e da demanda por soluções de alta qualidade, este é um problema N P-difı́cil, o que leva à necessidade de buscar estratégias alternativas para obtenção de boas soluções em tempo viável. Neste contexto, as metaheurı́sticas se destacam, visto que têm sido bem sucedidas na resolução de diferentes problemas difı́ceis, inclusive do MKP. Neste trabalho, são propostas duas implementações usando GPGPU do algoritmo de otimização por enxame de partı́culas (PSO). A redução nos tempos de execução dos programas GPGPU em comparação com a versão sequencial foi relevante, o que mostrou a eficácia do uso de estratégias de paralelização com a metaheurı́stica estudada.","PeriodicalId":280012,"journal":{"name":"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementações GPGPU do Algoritmo de Otimização por Enxame de Partı́culas para o Problema da Mochila Multidimensional\",\"authors\":\"B. S. Munhão, Bianca de Almeida Dantas, Edson Norberto Cáceres, Henrique Mongelli\",\"doi\":\"10.5753/wscad_estendido.2019.8703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Um dos problemas mais conhecidos de otimização combinatória, que possui diversas aplicações práticas, é o problema da mochila multidimensional (MKP). Apesar de sua popularidade e da demanda por soluções de alta qualidade, este é um problema N P-difı́cil, o que leva à necessidade de buscar estratégias alternativas para obtenção de boas soluções em tempo viável. Neste contexto, as metaheurı́sticas se destacam, visto que têm sido bem sucedidas na resolução de diferentes problemas difı́ceis, inclusive do MKP. Neste trabalho, são propostas duas implementações usando GPGPU do algoritmo de otimização por enxame de partı́culas (PSO). A redução nos tempos de execução dos programas GPGPU em comparação com a versão sequencial foi relevante, o que mostrou a eficácia do uso de estratégias de paralelização com a metaheurı́stica estudada.\",\"PeriodicalId\":280012,\"journal\":{\"name\":\"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wscad_estendido.2019.8703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad_estendido.2019.8703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementações GPGPU do Algoritmo de Otimização por Enxame de Partı́culas para o Problema da Mochila Multidimensional
Um dos problemas mais conhecidos de otimização combinatória, que possui diversas aplicações práticas, é o problema da mochila multidimensional (MKP). Apesar de sua popularidade e da demanda por soluções de alta qualidade, este é um problema N P-difı́cil, o que leva à necessidade de buscar estratégias alternativas para obtenção de boas soluções em tempo viável. Neste contexto, as metaheurı́sticas se destacam, visto que têm sido bem sucedidas na resolução de diferentes problemas difı́ceis, inclusive do MKP. Neste trabalho, são propostas duas implementações usando GPGPU do algoritmo de otimização por enxame de partı́culas (PSO). A redução nos tempos de execução dos programas GPGPU em comparação com a versão sequencial foi relevante, o que mostrou a eficácia do uso de estratégias de paralelização com a metaheurı́stica estudada.