{"title":"英语-乌尔都语语码混合语言中的幽默检测","authors":"S. Bukhari, Anusha Zubair, Muhammad Umair Arshad","doi":"10.1109/ICAI58407.2023.10136656","DOIUrl":null,"url":null,"abstract":"This research proposes a novel approach for de-tecting humor in code-mixed English-Urdu (Roman Urdu) text. Our approach combines advanced deep learning algorithms, machine learning, and transfer learning algorithms to classify code-mixed text as humorous or non-humorous. We used deep learning algorithms like CNN(Convolutional Neural Networks), LSTM(Long short-term memory), BiLSTM, and a hybrid model made from their combination after some hyper-tuning. We found that the hybrid CNN-BiLSTM model had an accuracy of approximately 75%, while XLM-RoBERTa outperformed all other models with an accuracy of 77.04 %. This is the first time these approaches have been applied to code-mixed Roman Urdu, a low-resource language.","PeriodicalId":161809,"journal":{"name":"2023 3rd International Conference on Artificial Intelligence (ICAI)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Humor Detection in English-Urdu Code-Mixed Language\",\"authors\":\"S. Bukhari, Anusha Zubair, Muhammad Umair Arshad\",\"doi\":\"10.1109/ICAI58407.2023.10136656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a novel approach for de-tecting humor in code-mixed English-Urdu (Roman Urdu) text. Our approach combines advanced deep learning algorithms, machine learning, and transfer learning algorithms to classify code-mixed text as humorous or non-humorous. We used deep learning algorithms like CNN(Convolutional Neural Networks), LSTM(Long short-term memory), BiLSTM, and a hybrid model made from their combination after some hyper-tuning. We found that the hybrid CNN-BiLSTM model had an accuracy of approximately 75%, while XLM-RoBERTa outperformed all other models with an accuracy of 77.04 %. This is the first time these approaches have been applied to code-mixed Roman Urdu, a low-resource language.\",\"PeriodicalId\":161809,\"journal\":{\"name\":\"2023 3rd International Conference on Artificial Intelligence (ICAI)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Artificial Intelligence (ICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAI58407.2023.10136656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Artificial Intelligence (ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAI58407.2023.10136656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Humor Detection in English-Urdu Code-Mixed Language
This research proposes a novel approach for de-tecting humor in code-mixed English-Urdu (Roman Urdu) text. Our approach combines advanced deep learning algorithms, machine learning, and transfer learning algorithms to classify code-mixed text as humorous or non-humorous. We used deep learning algorithms like CNN(Convolutional Neural Networks), LSTM(Long short-term memory), BiLSTM, and a hybrid model made from their combination after some hyper-tuning. We found that the hybrid CNN-BiLSTM model had an accuracy of approximately 75%, while XLM-RoBERTa outperformed all other models with an accuracy of 77.04 %. This is the first time these approaches have been applied to code-mixed Roman Urdu, a low-resource language.