英语-乌尔都语语码混合语言中的幽默检测

S. Bukhari, Anusha Zubair, Muhammad Umair Arshad
{"title":"英语-乌尔都语语码混合语言中的幽默检测","authors":"S. Bukhari, Anusha Zubair, Muhammad Umair Arshad","doi":"10.1109/ICAI58407.2023.10136656","DOIUrl":null,"url":null,"abstract":"This research proposes a novel approach for de-tecting humor in code-mixed English-Urdu (Roman Urdu) text. Our approach combines advanced deep learning algorithms, machine learning, and transfer learning algorithms to classify code-mixed text as humorous or non-humorous. We used deep learning algorithms like CNN(Convolutional Neural Networks), LSTM(Long short-term memory), BiLSTM, and a hybrid model made from their combination after some hyper-tuning. We found that the hybrid CNN-BiLSTM model had an accuracy of approximately 75%, while XLM-RoBERTa outperformed all other models with an accuracy of 77.04 %. This is the first time these approaches have been applied to code-mixed Roman Urdu, a low-resource language.","PeriodicalId":161809,"journal":{"name":"2023 3rd International Conference on Artificial Intelligence (ICAI)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Humor Detection in English-Urdu Code-Mixed Language\",\"authors\":\"S. Bukhari, Anusha Zubair, Muhammad Umair Arshad\",\"doi\":\"10.1109/ICAI58407.2023.10136656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a novel approach for de-tecting humor in code-mixed English-Urdu (Roman Urdu) text. Our approach combines advanced deep learning algorithms, machine learning, and transfer learning algorithms to classify code-mixed text as humorous or non-humorous. We used deep learning algorithms like CNN(Convolutional Neural Networks), LSTM(Long short-term memory), BiLSTM, and a hybrid model made from their combination after some hyper-tuning. We found that the hybrid CNN-BiLSTM model had an accuracy of approximately 75%, while XLM-RoBERTa outperformed all other models with an accuracy of 77.04 %. This is the first time these approaches have been applied to code-mixed Roman Urdu, a low-resource language.\",\"PeriodicalId\":161809,\"journal\":{\"name\":\"2023 3rd International Conference on Artificial Intelligence (ICAI)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Artificial Intelligence (ICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAI58407.2023.10136656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Artificial Intelligence (ICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAI58407.2023.10136656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新的语码混合英语-乌尔都语(罗马乌尔都语)文本幽默检测方法。我们的方法结合了先进的深度学习算法、机器学习和迁移学习算法,将代码混合文本分类为幽默或非幽默。我们使用了CNN(卷积神经网络)、LSTM(长短期记忆)、BiLSTM等深度学习算法,以及经过一些超调后由它们组合而成的混合模型。我们发现,CNN-BiLSTM混合模型的准确率约为75%,而XLM-RoBERTa的准确率为77.04%,优于所有其他模型。这是这些方法首次应用于代码混合的罗马乌尔都语,这是一种资源较少的语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Humor Detection in English-Urdu Code-Mixed Language
This research proposes a novel approach for de-tecting humor in code-mixed English-Urdu (Roman Urdu) text. Our approach combines advanced deep learning algorithms, machine learning, and transfer learning algorithms to classify code-mixed text as humorous or non-humorous. We used deep learning algorithms like CNN(Convolutional Neural Networks), LSTM(Long short-term memory), BiLSTM, and a hybrid model made from their combination after some hyper-tuning. We found that the hybrid CNN-BiLSTM model had an accuracy of approximately 75%, while XLM-RoBERTa outperformed all other models with an accuracy of 77.04 %. This is the first time these approaches have been applied to code-mixed Roman Urdu, a low-resource language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信