利用神经模糊模型对达卡股市指数的混沌行为进行建模

S. Banik, F. Chanchary, R. A. Rouf, K. Khan
{"title":"利用神经模糊模型对达卡股市指数的混沌行为进行建模","authors":"S. Banik, F. Chanchary, R. A. Rouf, K. Khan","doi":"10.1109/ICCITECHN.2007.4579362","DOIUrl":null,"url":null,"abstract":"Stock market prediction is an important area of financial forecasting, which attracts great interest to stock investors, stock buyers/sellers, policy makers, applied researchers and many others who are involved in the capital market. This paper aims to develop an efficient model to predict the Dhaka stock market index (DSPI) values using the appropriate forecasting model. It is widely believed that stock data are nonlinear, dynamic and chaotic. In this paper, we propose an adaptive network based fuzzy inference system (ANFIS) to predict DSPI values. We used the daily general DSPI values for the period of March 2003 to October10, 2006 for the learning and October 11, 2006 to May 31, 2007 for the validation. Results obtained by this model are also compared to the back-propagation ANN model and the traditional ARIMA model to show advantages of proposed ANFIS model. Findings suggest that the ANFIS model can be used as a better predictor for daily general DSPI values as compared to the ANN and the ARIMA models.","PeriodicalId":338170,"journal":{"name":"2007 10th international conference on computer and information technology","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Modeling chaotic behavior of Dhaka Stock Market Index values using the neuro-fuzzy model\",\"authors\":\"S. Banik, F. Chanchary, R. A. Rouf, K. Khan\",\"doi\":\"10.1109/ICCITECHN.2007.4579362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stock market prediction is an important area of financial forecasting, which attracts great interest to stock investors, stock buyers/sellers, policy makers, applied researchers and many others who are involved in the capital market. This paper aims to develop an efficient model to predict the Dhaka stock market index (DSPI) values using the appropriate forecasting model. It is widely believed that stock data are nonlinear, dynamic and chaotic. In this paper, we propose an adaptive network based fuzzy inference system (ANFIS) to predict DSPI values. We used the daily general DSPI values for the period of March 2003 to October10, 2006 for the learning and October 11, 2006 to May 31, 2007 for the validation. Results obtained by this model are also compared to the back-propagation ANN model and the traditional ARIMA model to show advantages of proposed ANFIS model. Findings suggest that the ANFIS model can be used as a better predictor for daily general DSPI values as compared to the ANN and the ARIMA models.\",\"PeriodicalId\":338170,\"journal\":{\"name\":\"2007 10th international conference on computer and information technology\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 10th international conference on computer and information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2007.4579362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th international conference on computer and information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2007.4579362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

股票市场预测是金融预测的一个重要领域,引起了股票投资者、股票买卖双方、政策制定者、应用研究人员以及其他资本市场相关人士的极大兴趣。本文的目的是建立一个有效的模型来预测达卡股票市场指数(DSPI)的值。人们普遍认为股票数据是非线性的、动态的和混沌的。本文提出了一种基于自适应网络的模糊推理系统(ANFIS)来预测DSPI值。我们使用2003年3月至2006年10月10日期间的每日一般DSPI值进行学习,并使用2006年10月11日至2007年5月31日进行验证。通过与反向传播人工神经网络模型和传统的ARIMA模型的比较,验证了该模型的优越性。研究结果表明,与ANN和ARIMA模型相比,ANFIS模型可以更好地预测每日一般DSPI值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling chaotic behavior of Dhaka Stock Market Index values using the neuro-fuzzy model
Stock market prediction is an important area of financial forecasting, which attracts great interest to stock investors, stock buyers/sellers, policy makers, applied researchers and many others who are involved in the capital market. This paper aims to develop an efficient model to predict the Dhaka stock market index (DSPI) values using the appropriate forecasting model. It is widely believed that stock data are nonlinear, dynamic and chaotic. In this paper, we propose an adaptive network based fuzzy inference system (ANFIS) to predict DSPI values. We used the daily general DSPI values for the period of March 2003 to October10, 2006 for the learning and October 11, 2006 to May 31, 2007 for the validation. Results obtained by this model are also compared to the back-propagation ANN model and the traditional ARIMA model to show advantages of proposed ANFIS model. Findings suggest that the ANFIS model can be used as a better predictor for daily general DSPI values as compared to the ANN and the ARIMA models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信