指示手势增强了自然语言的模糊空间关系基础

P. Srimal, M. Muthugala, A. Jayasekara
{"title":"指示手势增强了自然语言的模糊空间关系基础","authors":"P. Srimal, M. Muthugala, A. Jayasekara","doi":"10.1109/FUZZ-IEEE.2017.8015637","DOIUrl":null,"url":null,"abstract":"In the recent past, domestic service robots have come under close scrutiny among researchers. When collaborating with humans, robots should be able to clearly understand the instructions conveyed by the human users. Voice interfaces are frequently used as a mean of interaction interface between users and robots, as it requires minimum amount of work overhead from the users. However, the information conveyed through the voice instructions are often ambiguous and cumbersome due to the inclusion of imprecise information. The voice instructions are often accompanied with gestures especially when referring objects, locations, directions etc. in the environment. However, the information conveyed solely through these gestures is also imprecise. Therefore, it is more effective to consider a multimodal interface rather than a unimodal interface in order to understand the user instructions. Moreover, the information conveyed through the gestures can be used to improve the understanding of the user instructions related to object placements. This paper proposes a method to enhance the interpretation of user instructions related to the object placements by interpreting the information conveyed through voice and gestures. Furthermore, the proposed system is capable of adapting the understanding, according to the spatial arrangement of the workspace of the robot. Fuzzy logic system is proposed in order to evaluate the information conveyed through these two modalities while considering the arrangement of the workspace. Experiments have been carried out in order to evaluate the performance of the proposed system. The experimental results validate the performance gain of the proposed multimodal system over the unimodal systems.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Deictic gesture enhanced fuzzy spatial relation grounding in natural language\",\"authors\":\"P. Srimal, M. Muthugala, A. Jayasekara\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the recent past, domestic service robots have come under close scrutiny among researchers. When collaborating with humans, robots should be able to clearly understand the instructions conveyed by the human users. Voice interfaces are frequently used as a mean of interaction interface between users and robots, as it requires minimum amount of work overhead from the users. However, the information conveyed through the voice instructions are often ambiguous and cumbersome due to the inclusion of imprecise information. The voice instructions are often accompanied with gestures especially when referring objects, locations, directions etc. in the environment. However, the information conveyed solely through these gestures is also imprecise. Therefore, it is more effective to consider a multimodal interface rather than a unimodal interface in order to understand the user instructions. Moreover, the information conveyed through the gestures can be used to improve the understanding of the user instructions related to object placements. This paper proposes a method to enhance the interpretation of user instructions related to the object placements by interpreting the information conveyed through voice and gestures. Furthermore, the proposed system is capable of adapting the understanding, according to the spatial arrangement of the workspace of the robot. Fuzzy logic system is proposed in order to evaluate the information conveyed through these two modalities while considering the arrangement of the workspace. Experiments have been carried out in order to evaluate the performance of the proposed system. The experimental results validate the performance gain of the proposed multimodal system over the unimodal systems.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

最近,家政服务机器人受到了研究人员的密切关注。在与人类合作时,机器人应该能够清楚地理解人类用户传达的指令。语音接口经常被用作用户和机器人之间的交互接口,因为它需要用户最少的工作开销。然而,由于包含了不精确的信息,通过语音指令传达的信息往往是模糊和繁琐的。语音指令通常伴随着手势,特别是在提及环境中的物体、位置、方向等时。然而,仅仅通过这些手势传达的信息也是不精确的。因此,为了理解用户指令,考虑多模态界面比单模态界面更有效。此外,通过手势传达的信息可用于提高对与物体放置相关的用户指令的理解。本文提出了一种通过解释语音和手势传达的信息来增强对与物体放置相关的用户指令的解释的方法。此外,所提出的系统能够根据机器人工作空间的空间安排来适应理解。在考虑工作空间布置的同时,提出了模糊逻辑系统来评价这两种方式所传递的信息。为了评估所提出的系统的性能,进行了实验。实验结果验证了所提出的多模态系统优于单模态系统的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deictic gesture enhanced fuzzy spatial relation grounding in natural language
In the recent past, domestic service robots have come under close scrutiny among researchers. When collaborating with humans, robots should be able to clearly understand the instructions conveyed by the human users. Voice interfaces are frequently used as a mean of interaction interface between users and robots, as it requires minimum amount of work overhead from the users. However, the information conveyed through the voice instructions are often ambiguous and cumbersome due to the inclusion of imprecise information. The voice instructions are often accompanied with gestures especially when referring objects, locations, directions etc. in the environment. However, the information conveyed solely through these gestures is also imprecise. Therefore, it is more effective to consider a multimodal interface rather than a unimodal interface in order to understand the user instructions. Moreover, the information conveyed through the gestures can be used to improve the understanding of the user instructions related to object placements. This paper proposes a method to enhance the interpretation of user instructions related to the object placements by interpreting the information conveyed through voice and gestures. Furthermore, the proposed system is capable of adapting the understanding, according to the spatial arrangement of the workspace of the robot. Fuzzy logic system is proposed in order to evaluate the information conveyed through these two modalities while considering the arrangement of the workspace. Experiments have been carried out in order to evaluate the performance of the proposed system. The experimental results validate the performance gain of the proposed multimodal system over the unimodal systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信