Li Sun, R. Sheshadri, Wei Zheng, Dimitrios Koutsonikolas
{"title":"智能手机WiFi有功功率/能耗建模","authors":"Li Sun, R. Sheshadri, Wei Zheng, Dimitrios Koutsonikolas","doi":"10.1109/ICDCS.2014.13","DOIUrl":null,"url":null,"abstract":"We conduct the first detailed measurement study of the properties of a class of WiFi active power/energy consumption models based on parameters readily available to smartphone app developers. We first consider a number of parameters used by previous models and show their limitations. We then focus on a recent approach modeling the active power consumption as a function of the application layer throughput. Using a large dataset and an 802.11n-equipped smartphone, we build four versions of a previously proposed linear power-throughput model, which allow us to explore the fundamental trade off between accuracy and simplicity. We study the properties of the model in relation to other parameters such as the packet size and/or the transport layer protocol, and we evaluate its accuracy under a variety of scenarios which have not been considered in previous studies. Our study shows that the model works well in a number of scenarios but its accuracy drops with high throughput values or when tested on different hardware. We further show that a non-linear model can greatly improve the accuracy in these two cases.","PeriodicalId":170186,"journal":{"name":"2014 IEEE 34th International Conference on Distributed Computing Systems","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Modeling WiFi Active Power/Energy Consumption in Smartphones\",\"authors\":\"Li Sun, R. Sheshadri, Wei Zheng, Dimitrios Koutsonikolas\",\"doi\":\"10.1109/ICDCS.2014.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We conduct the first detailed measurement study of the properties of a class of WiFi active power/energy consumption models based on parameters readily available to smartphone app developers. We first consider a number of parameters used by previous models and show their limitations. We then focus on a recent approach modeling the active power consumption as a function of the application layer throughput. Using a large dataset and an 802.11n-equipped smartphone, we build four versions of a previously proposed linear power-throughput model, which allow us to explore the fundamental trade off between accuracy and simplicity. We study the properties of the model in relation to other parameters such as the packet size and/or the transport layer protocol, and we evaluate its accuracy under a variety of scenarios which have not been considered in previous studies. Our study shows that the model works well in a number of scenarios but its accuracy drops with high throughput values or when tested on different hardware. We further show that a non-linear model can greatly improve the accuracy in these two cases.\",\"PeriodicalId\":170186,\"journal\":{\"name\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2014.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 34th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2014.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling WiFi Active Power/Energy Consumption in Smartphones
We conduct the first detailed measurement study of the properties of a class of WiFi active power/energy consumption models based on parameters readily available to smartphone app developers. We first consider a number of parameters used by previous models and show their limitations. We then focus on a recent approach modeling the active power consumption as a function of the application layer throughput. Using a large dataset and an 802.11n-equipped smartphone, we build four versions of a previously proposed linear power-throughput model, which allow us to explore the fundamental trade off between accuracy and simplicity. We study the properties of the model in relation to other parameters such as the packet size and/or the transport layer protocol, and we evaluate its accuracy under a variety of scenarios which have not been considered in previous studies. Our study shows that the model works well in a number of scenarios but its accuracy drops with high throughput values or when tested on different hardware. We further show that a non-linear model can greatly improve the accuracy in these two cases.