{"title":"YFCC100M HybridNet fc6基于内容的图像检索深度特征","authors":"Giuseppe Amato, F. Falchi, C. Gennaro, F. Rabitti","doi":"10.1145/2983554.2983557","DOIUrl":null,"url":null,"abstract":"This paper presents a corpus of deep features extracted from the YFCC100M images considering the fc6 hidden layer activation of the HybridNet deep convolutional neural network. For a set of random selected queries we made available k-NN results obtained sequentially scanning the entire set features comparing both using the Euclidean and Hamming Distance on a binarized version of the features. This set of results is ground truth for evaluating Content-Based Image Retrieval (CBIR) systems that use approximate similarity search methods for efficient and scalable indexing. Moreover, we present experimental results obtained indexing this corpus with two distinct approaches: the Metric Inverted File and the Lucene Quantization. These two CBIR systems are public available online allowing real-time search using both internal and external queries.","PeriodicalId":340803,"journal":{"name":"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval\",\"authors\":\"Giuseppe Amato, F. Falchi, C. Gennaro, F. Rabitti\",\"doi\":\"10.1145/2983554.2983557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a corpus of deep features extracted from the YFCC100M images considering the fc6 hidden layer activation of the HybridNet deep convolutional neural network. For a set of random selected queries we made available k-NN results obtained sequentially scanning the entire set features comparing both using the Euclidean and Hamming Distance on a binarized version of the features. This set of results is ground truth for evaluating Content-Based Image Retrieval (CBIR) systems that use approximate similarity search methods for efficient and scalable indexing. Moreover, we present experimental results obtained indexing this corpus with two distinct approaches: the Metric Inverted File and the Lucene Quantization. These two CBIR systems are public available online allowing real-time search using both internal and external queries.\",\"PeriodicalId\":340803,\"journal\":{\"name\":\"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983554.2983557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM Workshop on Multimedia COMMONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983554.2983557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
YFCC100M HybridNet fc6 Deep Features for Content-Based Image Retrieval
This paper presents a corpus of deep features extracted from the YFCC100M images considering the fc6 hidden layer activation of the HybridNet deep convolutional neural network. For a set of random selected queries we made available k-NN results obtained sequentially scanning the entire set features comparing both using the Euclidean and Hamming Distance on a binarized version of the features. This set of results is ground truth for evaluating Content-Based Image Retrieval (CBIR) systems that use approximate similarity search methods for efficient and scalable indexing. Moreover, we present experimental results obtained indexing this corpus with two distinct approaches: the Metric Inverted File and the Lucene Quantization. These two CBIR systems are public available online allowing real-time search using both internal and external queries.