基于RFM模型和深度神经网络的支付终端流失预测

M. Dadfarnia, Ali Alemi Matinpour, M. Abdoos
{"title":"基于RFM模型和深度神经网络的支付终端流失预测","authors":"M. Dadfarnia, Ali Alemi Matinpour, M. Abdoos","doi":"10.1109/IKT51791.2020.9345626","DOIUrl":null,"url":null,"abstract":"In recent years, there is remarkable growing concern for marketing team to retain their customers. This can be achieved by predicting accurately ahead of time, whether a terminal for buying is valuable in the foreseeable future or not. This paper presents the application of Deep Neural Network in the issue of classifying the payment terminals in different branches of Parsian bank specifically. The paper uses real data for classifying various payment terminals in 6 classes of terminal by a 5 layer deep neural network and RFM model. The empirical results reveal that utilizing the deep network generate significantly better accuracy in comparison with other popular methods.","PeriodicalId":382725,"journal":{"name":"2020 11th International Conference on Information and Knowledge Technology (IKT)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Churn Prediction in Payment Terminals Using RFM model and Deep Neural Network\",\"authors\":\"M. Dadfarnia, Ali Alemi Matinpour, M. Abdoos\",\"doi\":\"10.1109/IKT51791.2020.9345626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there is remarkable growing concern for marketing team to retain their customers. This can be achieved by predicting accurately ahead of time, whether a terminal for buying is valuable in the foreseeable future or not. This paper presents the application of Deep Neural Network in the issue of classifying the payment terminals in different branches of Parsian bank specifically. The paper uses real data for classifying various payment terminals in 6 classes of terminal by a 5 layer deep neural network and RFM model. The empirical results reveal that utilizing the deep network generate significantly better accuracy in comparison with other popular methods.\",\"PeriodicalId\":382725,\"journal\":{\"name\":\"2020 11th International Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th International Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT51791.2020.9345626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT51791.2020.9345626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们越来越关注营销团队如何留住客户。这可以通过提前准确预测购买终端在可预见的未来是否有价值来实现。本文具体介绍了深度神经网络在巴黎银行不同分支机构支付终端分类问题中的应用。本文利用真实数据,利用5层深度神经网络和RFM模型,将各类支付终端分为6类。实证结果表明,与其他流行的方法相比,使用深度网络可以显著提高准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Churn Prediction in Payment Terminals Using RFM model and Deep Neural Network
In recent years, there is remarkable growing concern for marketing team to retain their customers. This can be achieved by predicting accurately ahead of time, whether a terminal for buying is valuable in the foreseeable future or not. This paper presents the application of Deep Neural Network in the issue of classifying the payment terminals in different branches of Parsian bank specifically. The paper uses real data for classifying various payment terminals in 6 classes of terminal by a 5 layer deep neural network and RFM model. The empirical results reveal that utilizing the deep network generate significantly better accuracy in comparison with other popular methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信