{"title":"基于RFM模型和深度神经网络的支付终端流失预测","authors":"M. Dadfarnia, Ali Alemi Matinpour, M. Abdoos","doi":"10.1109/IKT51791.2020.9345626","DOIUrl":null,"url":null,"abstract":"In recent years, there is remarkable growing concern for marketing team to retain their customers. This can be achieved by predicting accurately ahead of time, whether a terminal for buying is valuable in the foreseeable future or not. This paper presents the application of Deep Neural Network in the issue of classifying the payment terminals in different branches of Parsian bank specifically. The paper uses real data for classifying various payment terminals in 6 classes of terminal by a 5 layer deep neural network and RFM model. The empirical results reveal that utilizing the deep network generate significantly better accuracy in comparison with other popular methods.","PeriodicalId":382725,"journal":{"name":"2020 11th International Conference on Information and Knowledge Technology (IKT)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Churn Prediction in Payment Terminals Using RFM model and Deep Neural Network\",\"authors\":\"M. Dadfarnia, Ali Alemi Matinpour, M. Abdoos\",\"doi\":\"10.1109/IKT51791.2020.9345626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, there is remarkable growing concern for marketing team to retain their customers. This can be achieved by predicting accurately ahead of time, whether a terminal for buying is valuable in the foreseeable future or not. This paper presents the application of Deep Neural Network in the issue of classifying the payment terminals in different branches of Parsian bank specifically. The paper uses real data for classifying various payment terminals in 6 classes of terminal by a 5 layer deep neural network and RFM model. The empirical results reveal that utilizing the deep network generate significantly better accuracy in comparison with other popular methods.\",\"PeriodicalId\":382725,\"journal\":{\"name\":\"2020 11th International Conference on Information and Knowledge Technology (IKT)\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th International Conference on Information and Knowledge Technology (IKT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IKT51791.2020.9345626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Information and Knowledge Technology (IKT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IKT51791.2020.9345626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Churn Prediction in Payment Terminals Using RFM model and Deep Neural Network
In recent years, there is remarkable growing concern for marketing team to retain their customers. This can be achieved by predicting accurately ahead of time, whether a terminal for buying is valuable in the foreseeable future or not. This paper presents the application of Deep Neural Network in the issue of classifying the payment terminals in different branches of Parsian bank specifically. The paper uses real data for classifying various payment terminals in 6 classes of terminal by a 5 layer deep neural network and RFM model. The empirical results reveal that utilizing the deep network generate significantly better accuracy in comparison with other popular methods.