粒子群算法在Richards模型参数估计中的应用研究

Ting-fa Wu, Jun-Bin You, Meijuan Yan, Hao-jun Sun
{"title":"粒子群算法在Richards模型参数估计中的应用研究","authors":"Ting-fa Wu, Jun-Bin You, Meijuan Yan, Hao-jun Sun","doi":"10.1109/WISA.2012.29","DOIUrl":null,"url":null,"abstract":"It's significant to establish a mathematical model for the spread of epidemic, to help control the epidemic situation and minimize their impacts. In this paper, Richards model is proposed to fit the spread and PSO is employed to estimate the parameters of Richards model. Meanwhile concave function decreasing strategy and linear decreasing strategy are adopted to update the particle's velocity inertia weights respectively, and a new object function in the sense of normalized cross-correlation is built. The experiment result indicates that, PSO is a valid method for the parameter estimation of Richards model.","PeriodicalId":313228,"journal":{"name":"2012 Ninth Web Information Systems and Applications Conference","volume":"302 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applied Research of PSO in Parameter Estimation of Richards Model\",\"authors\":\"Ting-fa Wu, Jun-Bin You, Meijuan Yan, Hao-jun Sun\",\"doi\":\"10.1109/WISA.2012.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It's significant to establish a mathematical model for the spread of epidemic, to help control the epidemic situation and minimize their impacts. In this paper, Richards model is proposed to fit the spread and PSO is employed to estimate the parameters of Richards model. Meanwhile concave function decreasing strategy and linear decreasing strategy are adopted to update the particle's velocity inertia weights respectively, and a new object function in the sense of normalized cross-correlation is built. The experiment result indicates that, PSO is a valid method for the parameter estimation of Richards model.\",\"PeriodicalId\":313228,\"journal\":{\"name\":\"2012 Ninth Web Information Systems and Applications Conference\",\"volume\":\"302 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2012.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2012.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立疫情传播的数学模型,对控制疫情、减少疫情影响具有重要意义。本文提出了Richards模型来拟合分布,并利用粒子群算法估计Richards模型的参数。同时采用凹函数递减策略和线性递减策略分别更新粒子的速度惯性权值,建立归一化互相关意义上的新目标函数。实验结果表明,粒子群算法是一种有效的Richards模型参数估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applied Research of PSO in Parameter Estimation of Richards Model
It's significant to establish a mathematical model for the spread of epidemic, to help control the epidemic situation and minimize their impacts. In this paper, Richards model is proposed to fit the spread and PSO is employed to estimate the parameters of Richards model. Meanwhile concave function decreasing strategy and linear decreasing strategy are adopted to update the particle's velocity inertia weights respectively, and a new object function in the sense of normalized cross-correlation is built. The experiment result indicates that, PSO is a valid method for the parameter estimation of Richards model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信