监控图像中的男女检测

D. Chahyati, M. I. Fanany, A. M. Arymurthy
{"title":"监控图像中的男女检测","authors":"D. Chahyati, M. I. Fanany, A. M. Arymurthy","doi":"10.1109/ICOICT.2017.8074682","DOIUrl":null,"url":null,"abstract":"Human gender detection from body profile is an important task for surveillance. Most surveillance cameras are placed at a distance such that it is not possible to see people's face clearly. In this paper, we report the comparison between fast-feature pyramids and deep region-based convolutional neural network (RCNN) to detect a person in surveillance images. Since RCNN performs better in detecting a person, further training is applied to the RCNN to detect man and woman. Transfer learning strategy is used due to a small number of training images. The result shows that the trained RCNN can detect man and woman with promising result.","PeriodicalId":244500,"journal":{"name":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Man woman detection in surveillance images\",\"authors\":\"D. Chahyati, M. I. Fanany, A. M. Arymurthy\",\"doi\":\"10.1109/ICOICT.2017.8074682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human gender detection from body profile is an important task for surveillance. Most surveillance cameras are placed at a distance such that it is not possible to see people's face clearly. In this paper, we report the comparison between fast-feature pyramids and deep region-based convolutional neural network (RCNN) to detect a person in surveillance images. Since RCNN performs better in detecting a person, further training is applied to the RCNN to detect man and woman. Transfer learning strategy is used due to a small number of training images. The result shows that the trained RCNN can detect man and woman with promising result.\",\"PeriodicalId\":244500,\"journal\":{\"name\":\"2017 5th International Conference on Information and Communication Technology (ICoIC7)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Conference on Information and Communication Technology (ICoIC7)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOICT.2017.8074682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOICT.2017.8074682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

人体轮廓性别检测是监测工作的重要内容。大多数监控摄像机都放置在一定的距离,这样就不可能清楚地看到人的脸。在本文中,我们报告了快速特征金字塔和基于深度区域的卷积神经网络(RCNN)在监控图像中检测人的比较。由于RCNN在识别人方面表现得更好,因此进一步训练RCNN来识别男人和女人。由于训练图像数量少,采用迁移学习策略。实验结果表明,训练后的RCNN可以很好地识别出男性和女性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Man woman detection in surveillance images
Human gender detection from body profile is an important task for surveillance. Most surveillance cameras are placed at a distance such that it is not possible to see people's face clearly. In this paper, we report the comparison between fast-feature pyramids and deep region-based convolutional neural network (RCNN) to detect a person in surveillance images. Since RCNN performs better in detecting a person, further training is applied to the RCNN to detect man and woman. Transfer learning strategy is used due to a small number of training images. The result shows that the trained RCNN can detect man and woman with promising result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信