排斥耦合振荡器的时间自相似同步模式和标度

D. Labavić, H. Meyer-Ortmanns
{"title":"排斥耦合振荡器的时间自相似同步模式和标度","authors":"D. Labavić, H. Meyer-Ortmanns","doi":"10.29195/iascs.01.01.0019","DOIUrl":null,"url":null,"abstract":"We study synchronization patterns in repulsively coupled Kuramoto oscillators and focus on the impact of disorder in the natural frequencies. Among other choices we select the grid size and topology in a way that we observe a dynamically induced dimensional reduction with a continuum of attractors as long as the natural frequencies are uniformly chosen. When we introduce disorder in these frequencies, we find limit cycles with periods that are orders of magnitude longer than the natural frequencies of individual oscillators. Moreover we identify sequences of temporary patterns of phase-locked motion, which are self-similar in time and whose periods scale with a power of the inverse width about a uniform frequency distribution. This behavior provides challenges for future research.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal self-similar synchronization patterns and scaling in repulsively coupled oscillators\",\"authors\":\"D. Labavić, H. Meyer-Ortmanns\",\"doi\":\"10.29195/iascs.01.01.0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study synchronization patterns in repulsively coupled Kuramoto oscillators and focus on the impact of disorder in the natural frequencies. Among other choices we select the grid size and topology in a way that we observe a dynamically induced dimensional reduction with a continuum of attractors as long as the natural frequencies are uniformly chosen. When we introduce disorder in these frequencies, we find limit cycles with periods that are orders of magnitude longer than the natural frequencies of individual oscillators. Moreover we identify sequences of temporary patterns of phase-locked motion, which are self-similar in time and whose periods scale with a power of the inverse width about a uniform frequency distribution. This behavior provides challenges for future research.\",\"PeriodicalId\":139082,\"journal\":{\"name\":\"arXiv: Adaptation and Self-Organizing Systems\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29195/iascs.01.01.0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29195/iascs.01.01.0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了排斥耦合Kuramoto振荡器的同步模式,重点研究了固有频率中无序的影响。在其他选择中,我们以一种方式选择网格大小和拓扑结构,只要统一选择固有频率,我们就可以观察到具有连续吸引子的动态诱导降维。当我们在这些频率中引入无序时,我们发现周期比单个振子的固有频率长几个数量级的极限环。此外,我们还确定了锁相运动的临时模式序列,这些序列在时间上是自相似的,其周期以均匀频率分布的逆宽度的幂次表示。这种行为为未来的研究提供了挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal self-similar synchronization patterns and scaling in repulsively coupled oscillators
We study synchronization patterns in repulsively coupled Kuramoto oscillators and focus on the impact of disorder in the natural frequencies. Among other choices we select the grid size and topology in a way that we observe a dynamically induced dimensional reduction with a continuum of attractors as long as the natural frequencies are uniformly chosen. When we introduce disorder in these frequencies, we find limit cycles with periods that are orders of magnitude longer than the natural frequencies of individual oscillators. Moreover we identify sequences of temporary patterns of phase-locked motion, which are self-similar in time and whose periods scale with a power of the inverse width about a uniform frequency distribution. This behavior provides challenges for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信