G. Dandachi, Anouar Rkhami, Y. H. Aoul, A. Outtagarts
{"title":"一种鲁棒的蒙特卡罗深度学习虚拟网络嵌入策略","authors":"G. Dandachi, Anouar Rkhami, Y. H. Aoul, A. Outtagarts","doi":"10.1109/LCN53696.2022.9843683","DOIUrl":null,"url":null,"abstract":"Network slicing is one of the building blocks in Zero Touch Networks. It mainly consists in a dynamic deployment of services in a substrate network. However, the Virtual Network Embedding (VNE) algorithms used generally follow a static mechanism, which results in sub-optimal embedding strategies and less robust decisions. Some reinforcement learning algorithms have been conceived for a dynamic decision, while being time-costly. In this paper, we propose a combination of deep Q-Network and a Monte Carlo (MC) approach. The idea is to learn, using DQN, a distribution of the placement solution, on which a MC-based search technique is applied. This improves the solution space exploration, and achieves a faster convergence of the placement decision, and thus a safer learning. The obtained results show that DQN with only 8 MC iterations achieves up to 44% improvement compared with a baseline First-Fit strategy, and up to 15% compared to a MC strategy.","PeriodicalId":303965,"journal":{"name":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Robust Monte-Carlo-Based Deep Learning Strategy for Virtual Network Embedding\",\"authors\":\"G. Dandachi, Anouar Rkhami, Y. H. Aoul, A. Outtagarts\",\"doi\":\"10.1109/LCN53696.2022.9843683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network slicing is one of the building blocks in Zero Touch Networks. It mainly consists in a dynamic deployment of services in a substrate network. However, the Virtual Network Embedding (VNE) algorithms used generally follow a static mechanism, which results in sub-optimal embedding strategies and less robust decisions. Some reinforcement learning algorithms have been conceived for a dynamic decision, while being time-costly. In this paper, we propose a combination of deep Q-Network and a Monte Carlo (MC) approach. The idea is to learn, using DQN, a distribution of the placement solution, on which a MC-based search technique is applied. This improves the solution space exploration, and achieves a faster convergence of the placement decision, and thus a safer learning. The obtained results show that DQN with only 8 MC iterations achieves up to 44% improvement compared with a baseline First-Fit strategy, and up to 15% compared to a MC strategy.\",\"PeriodicalId\":303965,\"journal\":{\"name\":\"2022 IEEE 47th Conference on Local Computer Networks (LCN)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 47th Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN53696.2022.9843683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN53696.2022.9843683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Robust Monte-Carlo-Based Deep Learning Strategy for Virtual Network Embedding
Network slicing is one of the building blocks in Zero Touch Networks. It mainly consists in a dynamic deployment of services in a substrate network. However, the Virtual Network Embedding (VNE) algorithms used generally follow a static mechanism, which results in sub-optimal embedding strategies and less robust decisions. Some reinforcement learning algorithms have been conceived for a dynamic decision, while being time-costly. In this paper, we propose a combination of deep Q-Network and a Monte Carlo (MC) approach. The idea is to learn, using DQN, a distribution of the placement solution, on which a MC-based search technique is applied. This improves the solution space exploration, and achieves a faster convergence of the placement decision, and thus a safer learning. The obtained results show that DQN with only 8 MC iterations achieves up to 44% improvement compared with a baseline First-Fit strategy, and up to 15% compared to a MC strategy.