JITBot

Chaiyakarn Khanan, Worawit Luewichana, Krissakorn Pruktharathikoon, Jirayus Jiarpakdee, C. Tantithamthavorn, Morakot Choetkiertikul, Chaiyong Ragkhitwetsagul, T. Sunetnanta
{"title":"JITBot","authors":"Chaiyakarn Khanan, Worawit Luewichana, Krissakorn Pruktharathikoon, Jirayus Jiarpakdee, C. Tantithamthavorn, Morakot Choetkiertikul, Chaiyong Ragkhitwetsagul, T. Sunetnanta","doi":"10.1145/3324884.3415295","DOIUrl":null,"url":null,"abstract":"Just-In-Time (JIT) defect prediction is a classification model that is trained using historical data to predict bug-introducing changes. However, recent studies raised concerns related to the explain-ability of the predictions of many software analytics applications (i.e., practitioners do not understand why commits are risky and how to improve them). In addition, the adoption of Just-In-Time defect prediction is still limited due to a lack of integration into CI/CD pipelines and modern software development platforms (e.g., GitHub). In this paper, we present an explainable Just-In-Time defect prediction framework to automatically generate feedback to developers by providing the riskiness of each commit, explaining why such commit is risky, and suggesting risk mitigation plans. The proposed framework is integrated into the GitHub CI/CD pipeline as a GitHub application to continuously monitor and analyse a stream of commits in many GitHub repositories. Finally, we discuss the usage scenarios and their implications to practitioners. The VDO demonstration is available at https://jitbot-tool.github.io/","PeriodicalId":267160,"journal":{"name":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"JITBot\",\"authors\":\"Chaiyakarn Khanan, Worawit Luewichana, Krissakorn Pruktharathikoon, Jirayus Jiarpakdee, C. Tantithamthavorn, Morakot Choetkiertikul, Chaiyong Ragkhitwetsagul, T. Sunetnanta\",\"doi\":\"10.1145/3324884.3415295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Just-In-Time (JIT) defect prediction is a classification model that is trained using historical data to predict bug-introducing changes. However, recent studies raised concerns related to the explain-ability of the predictions of many software analytics applications (i.e., practitioners do not understand why commits are risky and how to improve them). In addition, the adoption of Just-In-Time defect prediction is still limited due to a lack of integration into CI/CD pipelines and modern software development platforms (e.g., GitHub). In this paper, we present an explainable Just-In-Time defect prediction framework to automatically generate feedback to developers by providing the riskiness of each commit, explaining why such commit is risky, and suggesting risk mitigation plans. The proposed framework is integrated into the GitHub CI/CD pipeline as a GitHub application to continuously monitor and analyse a stream of commits in many GitHub repositories. Finally, we discuss the usage scenarios and their implications to practitioners. The VDO demonstration is available at https://jitbot-tool.github.io/\",\"PeriodicalId\":267160,\"journal\":{\"name\":\"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3324884.3415295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3415295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
JITBot
Just-In-Time (JIT) defect prediction is a classification model that is trained using historical data to predict bug-introducing changes. However, recent studies raised concerns related to the explain-ability of the predictions of many software analytics applications (i.e., practitioners do not understand why commits are risky and how to improve them). In addition, the adoption of Just-In-Time defect prediction is still limited due to a lack of integration into CI/CD pipelines and modern software development platforms (e.g., GitHub). In this paper, we present an explainable Just-In-Time defect prediction framework to automatically generate feedback to developers by providing the riskiness of each commit, explaining why such commit is risky, and suggesting risk mitigation plans. The proposed framework is integrated into the GitHub CI/CD pipeline as a GitHub application to continuously monitor and analyse a stream of commits in many GitHub repositories. Finally, we discuss the usage scenarios and their implications to practitioners. The VDO demonstration is available at https://jitbot-tool.github.io/
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信