主轴未对准的MEMS谐振器失配补偿的理论思考

T. Tsukamoto, Shuji Tanaka
{"title":"主轴未对准的MEMS谐振器失配补偿的理论思考","authors":"T. Tsukamoto, Shuji Tanaka","doi":"10.1109/INERTIAL51137.2021.9430491","DOIUrl":null,"url":null,"abstract":"In this paper, a theoretical aspect of frequency and damping mismatch compensation in a MEMS rate integrating gyroscope (RIG) controlled by CW and CCW rotational modes is reported. The mismatches of a resonator could be compensated by the amplitudes and phases of the driving signals, even if the principle axes of stiffness and damping are not aligned to the X-Y coordinate. The proposed theoretical formula well consistent with the previously reported experimental results, as well as the numerical simulation.","PeriodicalId":424028,"journal":{"name":"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Theoretical Consideration of Mismatch Compensation for MEMS Resonator Having Unaligned Principle Axes\",\"authors\":\"T. Tsukamoto, Shuji Tanaka\",\"doi\":\"10.1109/INERTIAL51137.2021.9430491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a theoretical aspect of frequency and damping mismatch compensation in a MEMS rate integrating gyroscope (RIG) controlled by CW and CCW rotational modes is reported. The mismatches of a resonator could be compensated by the amplitudes and phases of the driving signals, even if the principle axes of stiffness and damping are not aligned to the X-Y coordinate. The proposed theoretical formula well consistent with the previously reported experimental results, as well as the numerical simulation.\",\"PeriodicalId\":424028,\"journal\":{\"name\":\"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INERTIAL51137.2021.9430491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL51137.2021.9430491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了连续波和连续波两种旋转模式控制的MEMS速率积分陀螺仪(RIG)频率和阻尼失配补偿的理论问题。谐振器的不匹配可以通过驱动信号的幅值和相位来补偿,即使刚度和阻尼的主轴与X-Y坐标不对齐。本文提出的理论公式与已有的实验结果以及数值模拟结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Consideration of Mismatch Compensation for MEMS Resonator Having Unaligned Principle Axes
In this paper, a theoretical aspect of frequency and damping mismatch compensation in a MEMS rate integrating gyroscope (RIG) controlled by CW and CCW rotational modes is reported. The mismatches of a resonator could be compensated by the amplitudes and phases of the driving signals, even if the principle axes of stiffness and damping are not aligned to the X-Y coordinate. The proposed theoretical formula well consistent with the previously reported experimental results, as well as the numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信