PCA变换子空间中的正交LDA

M. Prasad, M. Sukumar, A. Ramakrishnan
{"title":"PCA变换子空间中的正交LDA","authors":"M. Prasad, M. Sukumar, A. Ramakrishnan","doi":"10.1109/ICFHR.2010.34","DOIUrl":null,"url":null,"abstract":"The paper addresses the effectiveness of orthogonal linear discriminant analysis (OLDA) in a principal component analysis (PCA) transformed subspace. The performance of the technique is studied for writer independent recognition of online handwritten Kannada numerals. Experiments show that the performance of LDA and OLDA are better in a PCA transformed subspace compared to that of the original feature space. In addition, the recognition accuracies of the system with OLDA are marginally better than that of LDA in both the original feature space and the PCA transformed subspace. An average recognition accuracy of 96.9% is achieved on a database collected from 69 writers. To our knowledge, this is the first ever reported work on recognition of online handwritten Kannada numerals.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"337 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Orthogonal LDA in PCA Transformed Subspace\",\"authors\":\"M. Prasad, M. Sukumar, A. Ramakrishnan\",\"doi\":\"10.1109/ICFHR.2010.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the effectiveness of orthogonal linear discriminant analysis (OLDA) in a principal component analysis (PCA) transformed subspace. The performance of the technique is studied for writer independent recognition of online handwritten Kannada numerals. Experiments show that the performance of LDA and OLDA are better in a PCA transformed subspace compared to that of the original feature space. In addition, the recognition accuracies of the system with OLDA are marginally better than that of LDA in both the original feature space and the PCA transformed subspace. An average recognition accuracy of 96.9% is achieved on a database collected from 69 writers. To our knowledge, this is the first ever reported work on recognition of online handwritten Kannada numerals.\",\"PeriodicalId\":335044,\"journal\":{\"name\":\"2010 12th International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"337 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2010.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文讨论了正交线性判别分析(OLDA)在主成分分析(PCA)变换子空间中的有效性。研究了该技术在在线手写卡纳达语数字的独立识别中的性能。实验表明,与原始特征空间相比,LDA和OLDA在PCA变换后的子空间中的性能更好。此外,在原始特征空间和PCA变换后的子空间中,使用OLDA的系统的识别精度都略优于LDA。在从69位作者收集的数据库中,平均识别准确率达到96.9%。据我们所知,这是有史以来首次报道的在线手写卡纳达数字识别工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal LDA in PCA Transformed Subspace
The paper addresses the effectiveness of orthogonal linear discriminant analysis (OLDA) in a principal component analysis (PCA) transformed subspace. The performance of the technique is studied for writer independent recognition of online handwritten Kannada numerals. Experiments show that the performance of LDA and OLDA are better in a PCA transformed subspace compared to that of the original feature space. In addition, the recognition accuracies of the system with OLDA are marginally better than that of LDA in both the original feature space and the PCA transformed subspace. An average recognition accuracy of 96.9% is achieved on a database collected from 69 writers. To our knowledge, this is the first ever reported work on recognition of online handwritten Kannada numerals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信