多重交叉验证的Oracle不等式

A. Vaart, S. Dudoit, M. Laan
{"title":"多重交叉验证的Oracle不等式","authors":"A. Vaart, S. Dudoit, M. Laan","doi":"10.1524/STND.2006.24.3.351","DOIUrl":null,"url":null,"abstract":"We consider choosing an estimator or model from a given class by cross validation consisting of holding a nonneglible fraction of the observations out as a test set. We derive bounds that show that the risk of the resulting procedure is (up to a constant) smaller than the risk of an oracle plus an error which typically grows logarithmically with the number of estimators in the class. We extend the results to penalized cross validation in order to control unbounded loss functions. Applications include regression with squared and absolute deviation loss and classification under Tsybakov’s condition.","PeriodicalId":380446,"journal":{"name":"Statistics & Decisions","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"156","resultStr":"{\"title\":\"Oracle inequalities for multi-fold cross validation\",\"authors\":\"A. Vaart, S. Dudoit, M. Laan\",\"doi\":\"10.1524/STND.2006.24.3.351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider choosing an estimator or model from a given class by cross validation consisting of holding a nonneglible fraction of the observations out as a test set. We derive bounds that show that the risk of the resulting procedure is (up to a constant) smaller than the risk of an oracle plus an error which typically grows logarithmically with the number of estimators in the class. We extend the results to penalized cross validation in order to control unbounded loss functions. Applications include regression with squared and absolute deviation loss and classification under Tsybakov’s condition.\",\"PeriodicalId\":380446,\"journal\":{\"name\":\"Statistics & Decisions\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"156\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Decisions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1524/STND.2006.24.3.351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Decisions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1524/STND.2006.24.3.351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156

摘要

我们考虑通过交叉验证从给定的类中选择一个估计器或模型,该交叉验证包括将观测值的不可忽略的部分作为测试集。我们推导出的界限表明,结果过程的风险(直到一个常数)小于oracle的风险加上一个通常随着类中估计器的数量呈对数增长的误差。我们将结果扩展到惩罚交叉验证,以控制无界损失函数。应用包括平方和绝对偏差损失回归和Tsybakov条件下的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oracle inequalities for multi-fold cross validation
We consider choosing an estimator or model from a given class by cross validation consisting of holding a nonneglible fraction of the observations out as a test set. We derive bounds that show that the risk of the resulting procedure is (up to a constant) smaller than the risk of an oracle plus an error which typically grows logarithmically with the number of estimators in the class. We extend the results to penalized cross validation in order to control unbounded loss functions. Applications include regression with squared and absolute deviation loss and classification under Tsybakov’s condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信