具有Jacobi权值的Cauchy积分的三角求积规则

Philsu Kim
{"title":"具有Jacobi权值的Cauchy积分的三角求积规则","authors":"Philsu Kim","doi":"10.1006/jath.2000.3513","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a quadrature rule for Cauchy integrals of the form I(wf;s)=[formula]w(t)f(t)/(t-s)dt, -1-1/2. Using the change of variables t=cosy, s=cosx and subtracting out the singularity, we propose a trigonometric quadrature rule. We obtain the error bounds independent of the set of values of poles and construct an automatic quadrature of nonadaptive type.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Trigonometric Quadrature Rule for Cauchy Integrals with Jacobi Weight\",\"authors\":\"Philsu Kim\",\"doi\":\"10.1006/jath.2000.3513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a quadrature rule for Cauchy integrals of the form I(wf;s)=[formula]w(t)f(t)/(t-s)dt, -1-1/2. Using the change of variables t=cosy, s=cosx and subtracting out the singularity, we propose a trigonometric quadrature rule. We obtain the error bounds independent of the set of values of poles and construct an automatic quadrature of nonadaptive type.\",\"PeriodicalId\":202056,\"journal\":{\"name\":\"J. Approx. Theory\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Approx. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1006/jath.2000.3513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2000.3513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文考虑了I(wf;s)=[公式]w(t)f(t)/(t-s)dt, -1-1/2的柯西积分的求积分规则。利用变量变换t=cosy, s=cosx,并减去奇异点,我们提出了一个三角积分规则。我们得到了与极点值集无关的误差界,并构造了一个非自适应型的自动正交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Trigonometric Quadrature Rule for Cauchy Integrals with Jacobi Weight
In this paper, we consider a quadrature rule for Cauchy integrals of the form I(wf;s)=[formula]w(t)f(t)/(t-s)dt, -1-1/2. Using the change of variables t=cosy, s=cosx and subtracting out the singularity, we propose a trigonometric quadrature rule. We obtain the error bounds independent of the set of values of poles and construct an automatic quadrature of nonadaptive type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信