稀疏非线性双基地SAR孔径的三维特征估计

J. Jackson, R. Moses
{"title":"稀疏非线性双基地SAR孔径的三维特征估计","authors":"J. Jackson, R. Moses","doi":"10.1109/RADAR.2010.5494608","DOIUrl":null,"url":null,"abstract":"We present an algorithm for extracting 3D canonical scattering features observed over sparse, bistatic SAR apertures. The input to the algorithm is a collection of noisy bistatic measurements which are, in general, collected over nonlinear flight paths. The output of the algorithm is a set of canonical scattering features that describe the 3D scene geometry. The algorithm employs a pragmatic approach to initializing feature estimates by first forming a 3D reflectivity reconstruction using sparsity-regularized least squares methods. Regions of high energy are detected in the reconstructions to obtain initial feature estimates. A single canonical feature, corresponding to a geometric shape primitive, is fit to each region via nonlinear optimization of fit error between the complex phase history data and parametric scattering models using a modification of the CLEAN method. Feature extraction results are presented for sparsely-sampled, nonlinear, 3D bistatic scattering prediction data of a simple scene.","PeriodicalId":125591,"journal":{"name":"2010 IEEE Radar Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3D feature estimation for sparse, nonlinear bistatic SAR apertures\",\"authors\":\"J. Jackson, R. Moses\",\"doi\":\"10.1109/RADAR.2010.5494608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for extracting 3D canonical scattering features observed over sparse, bistatic SAR apertures. The input to the algorithm is a collection of noisy bistatic measurements which are, in general, collected over nonlinear flight paths. The output of the algorithm is a set of canonical scattering features that describe the 3D scene geometry. The algorithm employs a pragmatic approach to initializing feature estimates by first forming a 3D reflectivity reconstruction using sparsity-regularized least squares methods. Regions of high energy are detected in the reconstructions to obtain initial feature estimates. A single canonical feature, corresponding to a geometric shape primitive, is fit to each region via nonlinear optimization of fit error between the complex phase history data and parametric scattering models using a modification of the CLEAN method. Feature extraction results are presented for sparsely-sampled, nonlinear, 3D bistatic scattering prediction data of a simple scene.\",\"PeriodicalId\":125591,\"journal\":{\"name\":\"2010 IEEE Radar Conference\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2010.5494608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2010.5494608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种提取在稀疏的双基地SAR孔径上观测到的三维典型散射特征的算法。该算法的输入是噪声双基地测量值的集合,通常是在非线性飞行路径上收集的。该算法的输出是一组描述三维场景几何形状的典型散射特征。该算法采用实用的方法初始化特征估计,首先使用稀疏正则化最小二乘法形成三维反射率重建。在重建中检测高能量区域以获得初始特征估计。采用一种改进的CLEAN方法,对复杂相历史数据与参数散射模型的拟合误差进行非线性优化,拟合每个区域对应一个几何形状原语的单个典型特征。给出了一个简单场景的稀疏采样非线性三维双基地散射预测数据的特征提取结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D feature estimation for sparse, nonlinear bistatic SAR apertures
We present an algorithm for extracting 3D canonical scattering features observed over sparse, bistatic SAR apertures. The input to the algorithm is a collection of noisy bistatic measurements which are, in general, collected over nonlinear flight paths. The output of the algorithm is a set of canonical scattering features that describe the 3D scene geometry. The algorithm employs a pragmatic approach to initializing feature estimates by first forming a 3D reflectivity reconstruction using sparsity-regularized least squares methods. Regions of high energy are detected in the reconstructions to obtain initial feature estimates. A single canonical feature, corresponding to a geometric shape primitive, is fit to each region via nonlinear optimization of fit error between the complex phase history data and parametric scattering models using a modification of the CLEAN method. Feature extraction results are presented for sparsely-sampled, nonlinear, 3D bistatic scattering prediction data of a simple scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信